cmaes_gen | R Documentation |
Create a list with cmaes_gen class. Basically, the function transform the population into a class that is accepted by the MOCMAES and SMOCMAES function.
cmaes_gen( population, ps_target = (1/(5 + (1/2)^0.5)), stepSize = 0.5, evoPath = rep(0, nrow(population)), covarianceMatrix = diag(nrow(population)) )
population |
The number of objective functions. A scalar value. |
ps_target |
The target success rate. Used to initialize cmaes_gen$averageSuccessRate. |
stepSize |
The initial step size. |
evoPath |
A vector of numbers indicating evolution path of each variable. |
covarianceMatrix |
Covariance matrix of the variables. |
An object of cmaes_gen class. It can be used as MO-CMA-ES parent. It is a 5 tuple: x (the design point, length = number of variable),averageSuccessRate (scalar),stepSize (scalar), evoPath (evolution path, vector, length = number of variable ),covarianceMatrix (square matrix with ncol = nrow = number of variable).
nVar <- 14 nObjective <- 5 nIndividual <- 100 crossoverProbability <- 1 ps_target <- 1 / (5 + ( 1 / 2 )^0.5 ) pop <- matrix(stats::runif(nIndividual*nVar), nrow = nVar) # create the population a_list <- cmaes_gen(pop) control <- list(successProbTarget=ps_target,crossoverProbability=crossoverProbability) # run a generation of MO-CMA-ES with standard WFG8 test function. numpyready <- reticulate::py_module_available('numpy') pygmoready <- reticulate::py_module_available('pygmo') py_module_ready <- numpyready && pygmoready if(py_module_ready) # prevent error on testing the example newGeneration <- MOCMAES(a_list,nObjective,WFG8,control,nObjective)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.