#
# Deleted parts from function impute_AR1_t:
#
#' @param impute_leading_NAs Logical value indicating if the leading missing values of time
#' series are to be imputed (default is \code{FALSE}).
#' @param impute_trailing_NAs Logical value indicating if the trailing missing values of time
#' series are to be imputed (default is \code{FALSE}).
impute_AR1_t <- function(y, n_samples = 1, impute_leading_NAs = FALSE, impute_trailing_NAs = FALSE,
random_walk = FALSE, zero_mean = FALSE,
fast_and_heuristic = TRUE, remove_outliers = FALSE,
return_estimates = FALSE,
tol = 1e-10, maxiter = 100, K = 30,
n_burn = 100, n_thin = 50) {
# if there are missing values at the head of the time series and impute_leading_NAs == TRUE, impute them.
if (index_obs_min > 1 & impute_leading_NAs) {
for (j in (index_obs_min - 1):1 )
y_imputed[j, ] <- ( y_imputed[j + 1, ] - rt(n_samples, nu) * sqrt(sigma2) - phi0 )/phi1
}
# if there are missing values at the tail of the time series and impute_trailing_NAs == TRUE, impute them.
if (index_obs_max < length(y) & impute_trailing_NAs){
for (i in (index_obs_max + 1):length(y))
y_imputed[i, ] <- phi0 + phi1 * y_imputed[i - 1, ] + rt(n_samples, nu) * sqrt(sigma2)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.