#' Regression Model Tables
#'
#' Display all tables relevant for Regression models. You can include up to
#' three models (x, y, and z) for hierarchical regression results.
#' @param x a model object
#' @param y a model object
#' @param z a model object
#' @param standardized Logical, indicating whether or not to print standardized
#' estimates. Standardized estimates are based on "refit" of the model
#' on standardized data but it will not standardize categorical predictors.
#' Defualt is TRUE.
#' @param unstandardized Logical, indicating whether or not to print
#' unstandardized estimates. Default is TRUE.
#' @param ci Confidence Interval (CI) level. Default to 0.95 (95%)
#' @param ci_method Documention based on ?parameters::parameters.
#' Method for computing degrees of freedom for confidence
#' intervals (CI) and the related p-values. Allowed are following options
#' (which vary depending on the model class): "residual", "normal",
#' "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot",
#' "uniroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si",
#' "bci", or "bcai". See section Confidence intervals and approximation of
#' degrees of freedom in model_parameters() for further details.
#' When ci_method=NULL, in most cases "wald" is used then.
#' @param bootstrap Documention based on ?parameters::parameters.
#' Should estimates be based on bootstrapped model? If TRUE, then arguments
#' of Bayesian regressions apply (see also bootstrap_parameters()).
#' @param iterations Documention based on ?parameters::parameters.
#' The number of bootstrap replicates. This only apply in the case of
#' bootstrapped frequentist models.
#' @param digits How many decimal places to round to? Default is 3.
#' @param print Create a knitr table for displaying as html table?
#' (default = TRUE)
#' @export
#'
regression_tables <- function(x, y = NULL, z = NULL,
standardized = TRUE,
unstandardized = TRUE,
ci = 0.95, ci_method = NULL,
bootstrap = FALSE, iterations = NULL,
digits = 3,
print = TRUE) {
rsqaured_table <- regression_rsquared(x, y, z, print = TRUE)
modelsig_table <- regression_modelsig(x, y, z, print = TRUE)
coeff_table <- regression_coeff(x, y, z,
standardized = standardized,
unstandardized = unstandardized,
ci = ci, ci_method = ci_method,
bootstrap = bootstrap,
iterations = iterations,
digits = digits,
print = TRUE)
gt::gt_group(rsqaured_table, modelsig_table, coeff_table)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.