tests/testthat/_snaps/difNLR.md

difNLR - examples at help page

Code
  (fit1 <- difNLR(Data, group, focal.name = 1, model = "3PLcg"))
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 3PL model with fixed guessing for groups

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1  82.0689      0.0000 ***
  Item2  28.3232      0.0000 ***
  Item3   0.6845      0.7102    
  Item4   3.3055      0.1915    
  Item5   1.1984      0.5492    
  Item6   0.1573      0.9244    
  Item7   8.3032      0.0157 *  
  Item8   2.8660      0.2386    
  Item9   0.4549      0.7966    
  Item10  1.3507      0.5090    
  Item11  1.2431      0.5371    
  Item12  1.0537      0.5905    
  Item13  4.4139      0.1100    
  Item14  1.4940      0.4738    
  Item15  1.3079      0.5200    
  Item16  0.1424      0.9313    
  Item17  3.1673      0.2052    
  Item18  2.0206      0.3641    
  Item19  6.2546      0.0438 *  
  Item20  3.4871      0.1749

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 5.9915 (significance level: 0.05)

  Items detected as DIF items:
   Item1
   Item2
   Item7
   Item19
Code
  summary(fitted(fit1))
Output
       Item1            Item2            Item3            Item4       
   Min.   :0.1340   Min.   :0.1040   Min.   :0.2988   Min.   :0.4093  
   1st Qu.:0.3568   1st Qu.:0.4272   1st Qu.:0.6607   1st Qu.:0.7422  
   Median :0.5093   Median :0.5844   Median :0.7504   Median :0.8122  
   Mean   :0.5251   Mean   :0.5702   Mean   :0.7157   Mean   :0.7820  
   3rd Qu.:0.7268   3rd Qu.:0.7315   3rd Qu.:0.8227   3rd Qu.:0.8666  
   Max.   :0.9705   Max.   :0.9679   Max.   :0.9447   Max.   :0.9566  
       Item5            Item6            Item7            Item8       
   Min.   :0.4258   Min.   :0.1755   Min.   :0.1924   Min.   :0.2732  
   1st Qu.:0.7634   1st Qu.:0.5495   1st Qu.:0.5468   1st Qu.:0.5343  
   Median :0.8560   Median :0.6819   Median :0.6648   Median :0.6410  
   Mean   :0.8122   Mean   :0.6386   Mean   :0.6500   Mean   :0.6166  
   3rd Qu.:0.9192   3rd Qu.:0.7920   3rd Qu.:0.7531   3rd Qu.:0.7416  
   Max.   :0.9886   Max.   :0.9564   Max.   :0.9299   Max.   :0.9293  
       Item9            Item10           Item11           Item12      
   Min.   :0.2212   Min.   :0.2253   Min.   :0.1829   Min.   :0.2533  
   1st Qu.:0.5057   1st Qu.:0.5002   1st Qu.:0.5979   1st Qu.:0.4533  
   Median :0.6025   Median :0.5979   Median :0.7208   Median :0.5597  
   Mean   :0.5786   Mean   :0.5750   Mean   :0.6741   Mean   :0.5474  
   3rd Qu.:0.6932   3rd Qu.:0.6904   3rd Qu.:0.8179   3rd Qu.:0.6731  
   Max.   :0.8841   Max.   :0.8860   Max.   :0.9596   Max.   :0.9125  
       Item13           Item14           Item15           Item16      
   Min.   :0.4102   Min.   :0.1199   Min.   :0.1741   Min.   :0.1039  
   1st Qu.:0.6842   1st Qu.:0.3349   1st Qu.:0.4474   1st Qu.:0.3140  
   Median :0.7715   Median :0.4531   Median :0.5432   Median :0.4549  
   Mean   :0.7421   Mean   :0.4432   Mean   :0.5224   Mean   :0.4461  
   3rd Qu.:0.8443   3rd Qu.:0.5834   3rd Qu.:0.6359   3rd Qu.:0.6140  
   Max.   :0.9610   Max.   :0.8798   Max.   :0.8470   Max.   :0.9246  
       Item17           Item18            Item19            Item20      
   Min.   :0.1824   Min.   :0.06246   Min.   :0.09561   Min.   :0.2103  
   1st Qu.:0.3717   1st Qu.:0.27960   1st Qu.:0.33303   1st Qu.:0.2986  
   Median :0.4599   Median :0.41775   Median :0.48166   Median :0.3893  
   Mean   :0.4519   Mean   :0.40978   Mean   :0.48171   Mean   :0.4117  
   3rd Qu.:0.5565   3rd Qu.:0.57444   3rd Qu.:0.63424   3rd Qu.:0.5271  
   Max.   :0.8139   Max.   :0.90358   Max.   :0.93207   Max.   :0.9096
Code
  fitted(fit1, item = 1)
Output
          1         2         3         4         5         6         7         8 
  0.4364813 0.7866563 0.8870283 0.2254449 0.7950139 0.2979029 0.5093386 0.4258949 
          9        10        11        12        13        14        15        16 
  0.7950139 0.7866563 0.8463985 0.7267631 0.4364813 0.5025621 0.7326843 0.3567994 
         17        18        19        20        21        22        23        24 
  0.5825445 0.7267631 0.4364813 0.3120550 0.4258949 0.8368960 0.8870283 0.8463985 
         25        26        27        28        29        30        31        32 
  0.6607947 0.5025621 0.7866563 0.5025621 0.7267631 0.2639710 0.5025621 0.6585473 
         33        34        35        36        37        38        39        40 
  0.7950139 0.3120550 0.4364813 0.5093386 0.6607947 0.8463985 0.5025621 0.5847767 
         41        42        43        44        45        46        47        48 
  0.2639710 0.5025621 0.5025621 0.7950139 0.7950139 0.4364813 0.3120550 0.5025621 
         49        50        51        52        53        54        55        56 
  0.2254449 0.5093386 0.5093386 0.2639710 0.1726988 0.5093386 0.3120550 0.5825445 
         57        58        59        60        61        62        63        64 
  0.3120550 0.5093386 0.5093386 0.5093386 0.9091805 0.6607947 0.3120550 0.2254449 
         65        66        67        68        69        70        71        72 
  0.6585473 0.7326843 0.2254449 0.7326843 0.1431489 0.9412824 0.4258949 0.2254449 
         73        74        75        76        77        78        79        80 
  0.4364813 0.5825445 0.5025621 0.2254449 0.6585473 0.2500383 0.3120550 0.5025621 
         81        82        83        84        85        86        87        88 
  0.5093386 0.5825445 0.2254449 0.3567994 0.5025621 0.6585473 0.2979029 0.3567994 
         89        90        91        92        93        94        95        96 
  0.4364813 0.7326843 0.2979029 0.7267631 0.4364813 0.7267631 0.2639710 0.2254449 
         97        98        99       100       101       102       103       104 
  0.3698991 0.8463985 0.2639710 0.8774494 0.9582384 0.5093386 0.5093386 0.6607947 
        105       106       107       108       109       110       111       112 
  0.3698991 0.2126244 0.7950139 0.7950139 0.6607947 0.1726988 0.6585473 0.4364813 
        113       114       115       116       117       118       119       120 
  0.3698991 0.8463985 0.3120550 0.5825445 0.3120550 0.8870283 0.2254449 0.4364813 
        121       122       123       124       125       126       127       128 
  0.7866563 0.4364813 0.2639710 0.8463985 0.2639710 0.5025621 0.2639710 0.2500383 
        129       130       131       132       133       134       135       136 
  0.2639710 0.2979029 0.4364813 0.4258949 0.4258949 0.8463985 0.3698991 0.3698991 
        137       138       139       140       141       142       143       144 
  0.1842596 0.5847767 0.7326843 0.8463985 0.3698991 0.1954771 0.2979029 0.7950139 
        145       146       147       148       149       150       151       152 
  0.5025621 0.6607947 0.9181070 0.7326843 0.2254449 0.3120550 0.2639710 0.2254449 
        153       154       155       156       157       158       159       160 
  0.6607947 0.4364813 0.8463985 0.3567994 0.2254449 0.9181070 0.9412824 0.3698991 
        161       162       163       164       165       166       167       168 
  0.4258949 0.5093386 0.9181070 0.1726988 0.4258949 0.4364813 0.6607947 0.9181070 
        169       170       171       172       173       174       175       176 
  0.2639710 0.7950139 0.2979029 0.6607947 0.5847767 0.5825445 0.7326843 0.4258949 
        177       178       179       180       181       182       183       184 
  0.4364813 0.7866563 0.8870283 0.1954771 0.3698991 0.8870283 0.9181070 0.8368960 
        185       186       187       188       189       190       191       192 
  0.5847767 0.5025621 0.8870283 0.3567994 0.1556872 0.7326843 0.3120550 0.5025621 
        193       194       195       196       197       198       199       200 
  0.7326843 0.1726988 0.9181070 0.5825445 0.5825445 0.6607947 0.7950139 0.4364813 
        201       202       203       204       205       206       207       208 
  0.3120550 0.5825445 0.2500383 0.7950139 0.8870283 0.7326843 0.7326843 0.4364813 
        209       210       211       212       213       214       215       216 
  0.7950139 0.3698991 0.5847767 0.3698991 0.2500383 0.5093386 0.1954771 0.2979029 
        217       218       219       220       221       222       223       224 
  0.7326843 0.7950139 0.9412824 0.7326843 0.5847767 0.3698991 0.3698991 0.7326843 
        225       226       227       228       229       230       231       232 
  0.3698991 0.4258949 0.7326843 0.5025621 0.5825445 0.5093386 0.3567994 0.9181070 
        233       234       235       236       237       238       239       240 
  0.8870283 0.3567994 0.8463985 0.7326843 0.5825445 0.9412824 0.3120550 0.9181070 
        241       242       243       244       245       246       247       248 
  0.7326843 0.6585473 0.6607947 0.4364813 0.5025621 0.3120550 0.4364813 0.5825445 
        249       250       251       252       253       254       255       256 
  0.5847767 0.3120550 0.8463985 0.5025621 0.7950139 0.6607947 0.5847767 0.5847767 
        257       258       259       260       261       262       263       264 
  0.6607947 0.4364813 0.7267631 0.7950139 0.1431489 0.6585473 0.3567994 0.2639710 
        265       266       267       268       269       270       271       272 
  0.6607947 0.5825445 0.8463985 0.4364813 0.7866563 0.1726988 0.4364813 0.6607947 
        273       274       275       276       277       278       279       280 
  0.7950139 0.3567994 0.9181070 0.3120550 0.5093386 0.1954771 0.3567994 0.5093386 
        281       282       283       284       285       286       287       288 
  0.2639710 0.7326843 0.5825445 0.4258949 0.5847767 0.7866563 0.5025621 0.7950139 
        289       290       291       292       293       294       295       296 
  0.9412824 0.4258949 0.4258949 0.2639710 0.3120550 0.5825445 0.4364813 0.8463985 
        297       298       299       300       301       302       303       304 
  0.5847767 0.5025621 0.5847767 0.8463985 0.5847767 0.3698991 0.3567994 0.2500383 
        305       306       307       308       309       310       311       312 
  0.6607947 0.9181070 0.7950139 0.9181070 0.4258949 0.3698991 0.6607947 0.2639710 
        313       314       315       316       317       318       319       320 
  0.4364813 0.5093386 0.8774494 0.7950139 0.5093386 0.6585473 0.5825445 0.3120550 
        321       322       323       324       325       326       327       328 
  0.2639710 0.5093386 0.7326843 0.1339969 0.6585473 0.7326843 0.3567994 0.7950139 
        329       330       331       332       333       334       335       336 
  0.7326843 0.1726988 0.3120550 0.3698991 0.4364813 0.2639710 0.8870283 0.5025621 
        337       338       339       340       341       342       343       344 
  0.5825445 0.4364813 0.6607947 0.3698991 0.6607947 0.5847767 0.7950139 0.7326843 
        345       346       347       348       349       350       351       352 
  0.5025621 0.5025621 0.4364813 0.4258949 0.8463985 0.2639710 0.1954771 0.8463985 
        353       354       355       356       357       358       359       360 
  0.5825445 0.6607947 0.2979029 0.8463985 0.5093386 0.2639710 0.2979029 0.4258949 
        361       362       363       364       365       366       367       368 
  0.7866563 0.2639710 0.5093386 0.2979029 0.8870283 0.4364813 0.3567994 0.3120550 
        369       370       371       372       373       374       375       376 
  0.2639710 0.5847767 0.3567994 0.5093386 0.2254449 0.4258949 0.5825445 0.3120550 
        377       378       379       380       381       382       383       384 
  0.1726988 0.7326843 0.5025621 0.7950139 0.8463985 0.5093386 0.4258949 0.5825445 
        385       386       387       388       389       390       391       392 
  0.6607947 0.9412824 0.5025621 0.9704721 0.3567994 0.1556872 0.3120550 0.3698991 
        393       394       395       396       397       398       399       400 
  0.7267631 0.5093386 0.5025621 0.3698991 0.4258949 0.8368960 0.8368960 0.8463985 
        401       402       403       404       405       406       407       408 
  0.2500383 0.3120550 0.4364813 0.8463985 0.9181070 0.3698991 0.5093386 0.5847767 
        409       410       411       412       413       414       415       416 
  0.4364813 0.8368960 0.6585473 0.4364813 0.7950139 0.4258949 0.5825445 0.1954771 
        417       418       419       420       421       422       423       424 
  0.5093386 0.2979029 0.4258949 0.1556872 0.3120550 0.6585473 0.4364813 0.4364813 
        425       426       427       428       429       430       431       432 
  0.5093386 0.3567994 0.6585473 0.6585473 0.5093386 0.5025621 0.3698991 0.4364813 
        433       434       435       436       437       438       439       440 
  0.5025621 0.8463985 0.3120550 0.7866563 0.7950139 0.2639710 0.2500383 0.5093386 
        441       442       443       444       445       446       447       448 
  0.5847767 0.5093386 0.7326843 0.2254449 0.3120550 0.7950139 0.6585473 0.6585473 
        449       450       451       452       453       454       455       456 
  0.1954771 0.3120550 0.5847767 0.1726988 0.8368960 0.5093386 0.5025621 0.7267631 
        457       458       459       460       461       462       463       464 
  0.5093386 0.5847767 0.3120550 0.7326843 0.5093386 0.5847767 0.7267631 0.7950139 
        465       466       467       468       469       470       471       472 
  0.2126244 0.2639710 0.5093386 0.7326843 0.5847767 0.6585473 0.5825445 0.6607947 
        473       474       475       476       477       478       479       480 
  0.3120550 0.5025621 0.7950139 0.7326843 0.3567994 0.5093386 0.5093386 0.7326843 
        481       482       483       484       485       486       487       488 
  0.8463985 0.5847767 0.7950139 0.7326843 0.5025621 0.3120550 0.7950139 0.6607947 
        489       490       491       492       493       494       495       496 
  0.4364813 0.6585473 0.7326843 0.2254449 0.2254449 0.3120550 0.5025621 0.1954771 
        497       498       499       500       501       502       503       504 
  0.2979029 0.5847767 0.5025621 0.7866563 0.8463985 0.2500383 0.3698991 0.3120550 
        505       506       507       508       509       510       511       512 
  0.5025621 0.4258949 0.3120550 0.4364813 0.3120550 0.3120550 0.3120550 0.1842596 
        513       514       515       516       517       518       519       520 
  0.2126244 0.6607947 0.7267631 0.2979029 0.3698991 0.4258949 0.2639710 0.5093386 
        521       522       523       524       525       526       527       528 
  0.5825445 0.5093386 0.9091805 0.7866563 0.5093386 0.6585473 0.8870283 0.5847767 
        529       530       531       532       533       534       535       536 
  0.2639710 0.8463985 0.8463985 0.5847767 0.3698991 0.4258949 0.3120550 0.6607947 
        537       538       539       540       541       542       543       544 
  0.6607947 0.7326843 0.5025621 0.5093386 0.2639710 0.3698991 0.6585473 0.3567994 
        545       546       547       548       549       550       551       552 
  0.5025621 0.7326843 0.5093386 0.4364813 0.3698991 0.2254449 0.4364813 0.2254449 
        553       554       555       556       557       558       559       560 
  0.7326843 0.4364813 0.3567994 0.4364813 0.6585473 0.2639710 0.6607947 0.5093386 
        561       562       563       564       565       566       567       568 
  0.8463985 0.2500383 0.5025621 0.7950139 0.4364813 0.5847767 0.2639710 0.7326843 
        569       570       571       572       573       574       575       576 
  0.9181070 0.4258949 0.5025621 0.7267631 0.3698991 0.4364813 0.5025621 0.5093386 
        577       578       579       580       581       582       583       584 
  0.3698991 0.7326843 0.1726988 0.3698991 0.4258949 0.1954771 0.5025621 0.5025621 
        585       586       587       588       589       590       591       592 
  0.5093386 0.2639710 0.4364813 0.1556872 0.7950139 0.4364813 0.8870283 0.2126244 
        593       594       595       596       597       598       599       600 
  0.3567994 0.5825445 0.5025621 0.5025621 0.4364813 0.2254449 0.5847767 0.6607947 
        601       602       603       604       605       606       607       608 
  0.2639710 0.2500383 0.3698991 0.2639710 0.3120550 0.7326843 0.8463985 0.7326843 
        609       610       611       612       613       614       615       616 
  0.7866563 0.5847767 0.6607947 0.5847767 0.5825445 0.7866563 0.4364813 0.1556872 
        617       618       619       620       621       622       623       624 
  0.5025621 0.1556872 0.7326843 0.2979029 0.4364813 0.1954771 0.4364813 0.4364813 
        625       626       627       628       629       630       631       632 
  0.3698991 0.1954771 0.7950139 0.4258949 0.8870283 0.7326843 0.2254449 0.6607947 
        633       634       635       636       637       638       639       640 
  0.5825445 0.7950139 0.7326843 0.8463985 0.6607947 0.7326843 0.5825445 0.8870283 
        641       642       643       644       645       646       647       648 
  0.4258949 0.5825445 0.5825445 0.5847767 0.2254449 0.3567994 0.3120550 0.3567994 
        649       650       651       652       653       654       655       656 
  0.4258949 0.5025621 0.8774494 0.4258949 0.7326843 0.7326843 0.6607947 0.4364813 
        657       658       659       660       661       662       663       664 
  0.7950139 0.7326843 0.1954771 0.7326843 0.3120550 0.7950139 0.2639710 0.3120550 
        665       666       667       668       669       670       671       672 
  0.3120550 0.9704721 0.5825445 0.6607947 0.2979029 0.2254449 0.3698991 0.5847767 
        673       674       675       676       677       678       679       680 
  0.4364813 0.3120550 0.7326843 0.5847767 0.1954771 0.4364813 0.3120550 0.4364813 
        681       682       683       684       685       686       687       688 
  0.1726988 0.4258949 0.3120550 0.1556872 0.6607947 0.8870283 0.4364813 0.8368960 
        689       690       691       692       693       694       695       696 
  0.3120550 0.3698991 0.8463985 0.5093386 0.5025621 0.5093386 0.2500383 0.7950139 
        697       698       699       700       701       702       703       704 
  0.7950139 0.5025621 0.2639710 0.7950139 0.2500383 0.2639710 0.9181070 0.2639710 
        705       706       707       708       709       710       711       712 
  0.3698991 0.2979029 0.7950139 0.4258949 0.4258949 0.3120550 0.1556872 0.8870283 
        713       714       715       716       717       718       719       720 
  0.7950139 0.5825445 0.5093386 0.5093386 0.5825445 0.1954771 0.3120550 0.5025621 
        721       722       723       724       725       726       727       728 
  0.5093386 0.4258949 0.5025621 0.5825445 0.8463985 0.7267631 0.1954771 0.3698991 
        729       730       731       732       733       734       735       736 
  0.5093386 0.6607947 0.3698991 0.7326843 0.5825445 0.3698991 0.6585473 0.3698991 
        737       738       739       740       741       742       743       744 
  0.7326843 0.2254449 0.3567994 0.8368960 0.5093386 0.5847767 0.8368960 0.7326843 
        745       746       747       748       749       750       751       752 
  0.3120550 0.5093386 0.2500383 0.8870283 0.7267631 0.2979029 0.7267631 0.5847767 
        753       754       755       756       757       758       759       760 
  0.5847767 0.6607947 0.5025621 0.7326843 0.4258949 0.3698991 0.6607947 0.9412824 
        761       762       763       764       765       766       767       768 
  0.2254449 0.3698991 0.6585473 0.1726988 0.2639710 0.3120550 0.5025621 0.5825445 
        769       770       771       772       773       774       775       776 
  0.5025621 0.3567994 0.3567994 0.8870283 0.7326843 0.5093386 0.3120550 0.3567994 
        777       778       779       780       781       782       783       784 
  0.6585473 0.7326843 0.3698991 0.8463985 0.6607947 0.3567994 0.7950139 0.3698991 
        785       786       787       788       789       790       791       792 
  0.4258949 0.3120550 0.2639710 0.5025621 0.5025621 0.5847767 0.2979029 0.8463985 
        793       794       795       796       797       798       799       800 
  0.5025621 0.7326843 0.1954771 0.5025621 0.4364813 0.5825445 0.3567994 0.2639710 
        801       802       803       804       805       806       807       808 
  0.5825445 0.5825445 0.7950139 0.8368960 0.7267631 0.7326843 0.3120550 0.4258949 
        809       810       811       812       813       814       815       816 
  0.2639710 0.8368960 0.8463985 0.5093386 0.7267631 0.7950139 0.2639710 0.4258949 
        817       818       819       820       821       822       823       824 
  0.2254449 0.5093386 0.4364813 0.1954771 0.7950139 0.7326843 0.7950139 0.8870283 
        825       826       827       828       829       830       831       832 
  0.8870283 0.3698991 0.4258949 0.1954771 0.5025621 0.4364813 0.2254449 0.2500383 
        833       834       835       836       837       838       839       840 
  0.5093386 0.5093386 0.3120550 0.2254449 0.4364813 0.3567994 0.8463985 0.5847767 
        841       842       843       844       845       846       847       848 
  0.6607947 0.4258949 0.7326843 0.2979029 0.5847767 0.3698991 0.2639710 0.2639710 
        849       850       851       852       853       854       855       856 
  0.7326843 0.1726988 0.5025621 0.4258949 0.5825445 0.2500383 0.5825445 0.3698991 
        857       858       859       860       861       862       863       864 
  0.5093386 0.5825445 0.5093386 0.7326843 0.5093386 0.7326843 0.6585473 0.7866563 
        865       866       867       868       869       870       871       872 
  0.4364813 0.5847767 0.8368960 0.5093386 0.5825445 0.2639710 0.5825445 0.8870283 
        873       874       875       876       877       878       879       880 
  0.6607947 0.3698991 0.9181070 0.7326843 0.5825445 0.3567994 0.4364813 0.6585473 
        881       882       883       884       885       886       887       888 
  0.3698991 0.1954771 0.5025621 0.8870283 0.5825445 0.4364813 0.6607947 0.5825445 
        889       890       891       892       893       894       895       896 
  0.3698991 0.7950139 0.4258949 0.1954771 0.4258949 0.6585473 0.5847767 0.4364813 
        897       898       899       900       901       902       903       904 
  0.3120550 0.8368960 0.6585473 0.6607947 0.5825445 0.3120550 0.7866563 0.3120550 
        905       906       907       908       909       910       911       912 
  0.7326843 0.2639710 0.7326843 0.5847767 0.3120550 0.7950139 0.6607947 0.3698991 
        913       914       915       916       917       918       919       920 
  0.5847767 0.5825445 0.3698991 0.7950139 0.3698991 0.4364813 0.5847767 0.8870283 
        921       922       923       924       925       926       927       928 
  0.5847767 0.3567994 0.4258949 0.5025621 0.6607947 0.1954771 0.5825445 0.5847767 
        929       930       931       932       933       934       935       936 
  0.5025621 0.5847767 0.7326843 0.7866563 0.5825445 0.4258949 0.5825445 0.3698991 
        937       938       939       940       941       942       943       944 
  0.5847767 0.7267631 0.1954771 0.7326843 0.5093386 0.4258949 0.3698991 0.8870283 
        945       946       947       948       949       950       951       952 
  0.3120550 0.5847767 0.1954771 0.2500383 0.5825445 0.5025621 0.5847767 0.5093386 
        953       954       955       956       957       958       959       960 
  0.3698991 0.8870283 0.6607947 0.1954771 0.5025621 0.5093386 0.2254449 0.8463985 
        961       962       963       964       965       966       967       968 
  0.7866563 0.2639710 0.1954771 0.6607947 0.2254449 0.2254449 0.4364813 0.6585473 
        969       970       971       972       973       974       975       976 
  0.4364813 0.2639710 0.3698991 0.1726988 0.5825445 0.7267631 0.3698991 0.6607947 
        977       978       979       980       981       982       983       984 
  0.7267631 0.7267631 0.6607947 0.7326843 0.6585473 0.9181070 0.5825445 0.7950139 
        985       986       987       988       989       990       991       992 
  0.2254449 0.6607947 0.5825445 0.2639710 0.5093386 0.5847767 0.1339969 0.5847767 
        993       994       995       996       997       998       999      1000 
  0.5093386 0.3698991 0.7326843 0.3567994 0.9181070 0.3698991 0.8870283 0.6607947 
       1001      1002      1003      1004      1005      1006      1007      1008 
  0.5825445 0.3567994 0.2254449 0.4258949 0.7326843 0.2979029 0.9582384 0.6607947 
       1009      1010      1011      1012      1013      1014      1015      1016 
  0.5847767 0.5025621 0.2254449 0.6607947 0.1632496 0.4364813 0.5825445 0.2639710 
       1017      1018      1019      1020      1021      1022      1023      1024 
  0.1726988 0.7326843 0.3567994 0.5825445 0.7326843 0.4258949 0.9181070 0.4258949 
       1025      1026      1027      1028      1029      1030      1031      1032 
  0.6585473 0.4364813 0.6607947 0.2254449 0.3120550 0.6607947 0.4258949 0.5847767 
       1033      1034      1035      1036      1037      1038      1039      1040 
  0.5093386 0.1954771 0.7267631 0.5825445 0.1556872 0.4258949 0.7326843 0.1842596 
       1041      1042      1043      1044      1045      1046      1047      1048 
  0.6607947 0.3698991 0.4258949 0.6585473 0.6585473 0.6607947 0.3120550 0.3567994 
       1049      1050      1051      1052      1053      1054      1055      1056 
  0.3698991 0.7950139 0.2639710 0.3120550 0.6607947 0.4258949 0.5093386 0.4364813 
       1057      1058      1059      1060      1061      1062      1063      1064 
  0.2500383 0.4364813 0.3698991 0.3698991 0.2979029 0.3567994 0.5847767 0.5025621 
       1065      1066      1067      1068      1069      1070      1071      1072 
  0.7326843 0.7326843 0.7950139 0.8463985 0.3567994 0.6607947 0.4364813 0.4258949 
       1073      1074      1075      1076      1077      1078      1079      1080 
  0.4364813 0.1556872 0.7950139 0.7950139 0.1431489 0.2254449 0.5025621 0.2639710 
       1081      1082      1083      1084      1085      1086      1087      1088 
  0.4258949 0.2254449 0.9412824 0.1726988 0.5025621 0.2639710 0.2500383 0.5025621 
       1089      1090      1091      1092      1093      1094      1095      1096 
  0.2126244 0.4258949 0.5847767 0.7950139 0.8870283 0.7950139 0.6607947 0.5093386 
       1097      1098      1099      1100      1101      1102      1103      1104 
  0.5847767 0.1954771 0.3120550 0.3120550 0.9412824 0.2500383 0.7326843 0.2639710 
       1105      1106      1107      1108      1109      1110      1111      1112 
  0.7267631 0.5847767 0.3120550 0.4258949 0.5093386 0.4258949 0.5847767 0.4364813 
       1113      1114      1115      1116      1117      1118      1119      1120 
  0.3698991 0.2500383 0.7326843 0.6585473 0.5025621 0.6607947 0.5093386 0.7950139 
       1121      1122      1123      1124      1125      1126      1127      1128 
  0.8870283 0.7326843 0.5025621 0.6607947 0.5825445 0.5825445 0.3567994 0.3698991 
       1129      1130      1131      1132      1133      1134      1135      1136 
  0.4258949 0.6607947 0.1726988 0.3698991 0.8368960 0.4258949 0.8870283 0.4258949 
       1137      1138      1139      1140      1141      1142      1143      1144 
  0.2979029 0.5025621 0.2500383 0.5825445 0.3698991 0.1726988 0.3698991 0.3698991 
       1145      1146      1147      1148      1149      1150      1151      1152 
  0.5847767 0.5847767 0.7950139 0.5093386 0.3698991 0.4364813 0.6607947 0.2500383 
       1153      1154      1155      1156      1157      1158      1159      1160 
  0.2500383 0.2254449 0.7950139 0.9181070 0.8870283 0.4364813 0.9181070 0.7326843 
       1161      1162      1163      1164      1165      1166      1167      1168 
  0.2126244 0.2254449 0.5025621 0.7267631 0.7326843 0.2126244 0.5025621 0.2254449 
       1169      1170      1171      1172      1173      1174      1175      1176 
  0.5025621 0.7326843 0.4258949 0.4258949 0.2979029 0.9091805 0.9412824 0.7267631 
       1177      1178      1179      1180      1181      1182      1183      1184 
  0.7950139 0.5093386 0.1556872 0.5825445 0.7950139 0.5025621 0.5025621 0.6607947 
       1185      1186      1187      1188      1189      1190      1191      1192 
  0.4364813 0.5825445 0.3120550 0.5847767 0.5093386 0.4258949 0.6607947 0.8774494 
       1193      1194      1195      1196      1197      1198      1199      1200 
  0.7866563 0.5093386 0.7950139 0.3120550 0.7950139 0.4364813 0.2500383 0.7866563 
       1201      1202      1203      1204      1205      1206      1207      1208 
  0.6585473 0.5847767 0.3567994 0.6607947 0.4258949 0.8870283 0.9181070 0.2639710 
       1209      1210      1211      1212      1213      1214      1215      1216 
  0.9181070 0.3120550 0.3120550 0.6607947 0.3698991 0.9412824 0.3698991 0.4364813 
       1217      1218      1219      1220      1221      1222      1223      1224 
  0.6585473 0.6585473 0.8368960 0.1726988 0.5093386 0.7950139 0.4364813 0.5825445 
       1225      1226      1227      1228      1229      1230      1231      1232 
  0.3120550 0.7950139 0.3698991 0.7267631 0.7326843 0.4364813 0.5093386 0.7950139 
       1233      1234      1235      1236      1237      1238      1239      1240 
  0.5093386 0.7326843 0.9181070 0.3567994 0.7950139 0.4258949 0.7326843 0.3120550 
       1241      1242      1243      1244      1245      1246      1247      1248 
  0.5825445 0.6607947 0.5825445 0.7326843 0.7267631 0.5025621 0.7267631 0.5825445 
       1249      1250      1251      1252      1253      1254      1255      1256 
  0.9412824 0.3120550 0.3120550 0.3120550 0.4364813 0.5093386 0.3698991 0.2254449 
       1257      1258      1259      1260      1261      1262      1263      1264 
  0.5093386 0.7326843 0.5025621 0.5825445 0.5093386 0.1954771 0.3120550 0.6607947 
       1265      1266      1267      1268      1269      1270      1271      1272 
  0.5825445 0.1726988 0.5025621 0.6607947 0.5025621 0.2979029 0.2979029 0.5093386 
       1273      1274      1275      1276      1277      1278      1279      1280 
  0.7267631 0.3567994 0.7866563 0.7326843 0.3120550 0.8463985 0.4364813 0.6585473 
       1281      1282      1283      1284      1285      1286      1287      1288 
  0.3120550 0.9181070 0.1726988 0.5847767 0.5847767 0.2500383 0.5025621 0.9412824 
       1289      1290      1291      1292      1293      1294      1295      1296 
  0.1726988 0.5093386 0.8463985 0.1726988 0.5847767 0.6585473 0.6607947 0.4364813 
       1297      1298      1299      1300      1301      1302      1303      1304 
  0.6585473 0.8463985 0.3698991 0.5847767 0.7950139 0.1726988 0.7950139 0.3120550 
       1305      1306      1307      1308      1309      1310      1311      1312 
  0.7866563 0.6607947 0.2639710 0.5825445 0.5025621 0.8463985 0.8463985 0.4258949 
       1313      1314      1315      1316      1317      1318      1319      1320 
  0.3698991 0.2254449 0.5093386 0.7326843 0.7950139 0.8870283 0.7267631 0.6607947 
       1321      1322      1323      1324      1325      1326      1327      1328 
  0.5847767 0.3698991 0.5025621 0.7950139 0.6585473 0.2639710 0.3120550 0.5093386 
       1329      1330      1331      1332      1333      1334      1335      1336 
  0.8463985 0.2979029 0.6585473 0.5025621 0.7326843 0.3698991 0.5025621 0.7950139 
       1337      1338      1339      1340      1341      1342      1343      1344 
  0.2639710 0.5825445 0.7950139 0.2639710 0.3120550 0.9181070 0.5825445 0.2979029 
       1345      1346      1347      1348      1349      1350      1351      1352 
  0.5825445 0.4364813 0.5025621 0.2254449 0.3120550 0.5093386 0.3698991 0.5025621 
       1353      1354      1355      1356      1357      1358      1359      1360 
  0.8870283 0.7866563 0.3567994 0.5847767 0.5093386 0.5825445 0.7866563 0.8463985 
       1361      1362      1363      1364      1365      1366      1367      1368 
  0.2639710 0.6607947 0.5825445 0.2254449 0.5093386 0.6607947 0.9181070 0.3698991 
       1369      1370      1371      1372      1373      1374      1375      1376 
  0.6607947 0.9181070 0.6585473 0.6607947 0.9091805 0.3120550 0.4364813 0.5093386 
       1377      1378      1379      1380      1381      1382      1383      1384 
  0.7950139 0.4364813 0.5825445 0.4258949 0.2254449 0.5025621 0.5825445 0.1954771 
       1385      1386      1387      1388      1389      1390      1391      1392 
  0.7950139 0.3120550 0.3698991 0.1954771 0.1556872 0.7950139 0.5093386 0.5093386 
       1393      1394      1395      1396      1397      1398      1399      1400 
  0.7326843 0.7866563 0.7866563 0.7326843 0.4258949 0.5847767 0.4364813 0.2126244 
       1401      1402      1403      1404      1405      1406      1407      1408 
  0.7950139 0.9704721 0.4258949 0.7950139 0.3698991 0.3698991 0.6607947 0.5093386 
       1409      1410      1411      1412      1413      1414      1415      1416 
  0.8774494 0.7950139 0.2500383 0.5025621 0.2639710 0.3567994 0.4258949 0.9181070 
       1417      1418      1419      1420      1421      1422      1423      1424 
  0.6585473 0.7326843 0.2126244 0.5847767 0.3120550 0.5093386 0.4364813 0.8463985 
       1425      1426      1427      1428      1429      1430      1431      1432 
  0.6607947 0.7326843 0.6607947 0.2979029 0.4258949 0.1954771 0.7267631 0.3120550 
       1433      1434      1435      1436      1437      1438      1439      1440 
  0.5825445 0.5025621 0.4258949 0.1954771 0.7326843 0.9582384 0.7326843 0.5025621 
       1441      1442      1443      1444      1445      1446      1447      1448 
  0.1954771 0.7326843 0.5847767 0.5825445 0.8463985 0.2639710 0.7866563 0.3567994 
       1449      1450      1451      1452      1453      1454      1455      1456 
  0.6607947 0.7267631 0.8870283 0.4364813 0.3698991 0.4258949 0.5847767 0.6585473 
       1457      1458      1459      1460      1461      1462      1463      1464 
  0.7326843 0.3120550 0.5093386 0.2500383 0.5025621 0.5847767 0.3120550 0.2639710 
       1465      1466      1467      1468      1469      1470      1471      1472 
  0.7950139 0.5093386 0.5093386 0.5093386 0.6607947 0.1954771 0.5025621 0.8368960 
       1473      1474      1475      1476      1477      1478      1479      1480 
  0.2126244 0.7950139 0.3698991 0.2979029 0.7326843 0.1556872 0.8463985 0.7326843 
       1481      1482      1483      1484      1485      1486      1487      1488 
  0.3698991 0.8463985 0.3698991 0.9582384 0.4364813 0.5093386 0.2979029 0.7267631 
       1489      1490      1491      1492      1493      1494      1495      1496 
  0.4364813 0.6607947 0.6607947 0.3120550 0.5093386 0.7326843 0.5825445 0.3698991 
       1497      1498      1499      1500      1501      1502      1503      1504 
  0.4364813 0.7950139 0.6607947 0.5825445 0.7326843 0.5093386 0.9181070 0.1954771 
       1505      1506      1507      1508      1509      1510      1511      1512 
  0.7950139 0.6607947 0.2254449 0.5093386 0.1954771 0.5093386 0.2639710 0.4364813 
       1513      1514      1515      1516      1517      1518      1519      1520 
  0.3698991 0.2639710 0.5825445 0.4258949 0.5825445 0.5025621 0.1726988 0.7326843 
       1521      1522      1523      1524      1525      1526      1527      1528 
  0.4364813 0.6585473 0.5025621 0.7950139 0.5093386 0.6607947 0.2500383 0.6607947 
       1529      1530      1531      1532      1533      1534      1535      1536 
  0.5825445 0.6607947 0.4258949 0.7866563 0.7326843 0.4364813 0.3120550 0.9412824 
       1537      1538      1539      1540      1541      1542      1543      1544 
  0.2639710 0.5025621 0.6607947 0.5825445 0.8463985 0.6607947 0.2500383 0.3698991 
       1545      1546      1547      1548      1549      1550      1551      1552 
  0.8463985 0.8463985 0.3120550 0.6607947 0.6607947 0.1726988 0.2639710 0.2254449 
       1553      1554      1555      1556      1557      1558      1559      1560 
  0.2979029 0.3698991 0.4364813 0.3120550 0.5847767 0.2254449 0.6585473 0.3567994 
       1561      1562      1563      1564      1565      1566      1567      1568 
  0.1842596 0.5847767 0.9412824 0.5847767 0.6585473 0.6607947 0.5025621 0.9412824 
       1569      1570      1571      1572      1573      1574      1575      1576 
  0.1726988 0.4364813 0.7950139 0.6585473 0.7326843 0.4364813 0.3698991 0.5847767 
       1577      1578      1579      1580      1581      1582      1583      1584 
  0.3120550 0.5847767 0.5847767 0.8463985 0.2500383 0.3698991 0.8368960 0.1726988 
       1585      1586      1587      1588      1589      1590      1591      1592 
  0.8870283 0.7267631 0.5847767 0.2979029 0.1954771 0.7326843 0.7326843 0.3567994 
       1593      1594      1595      1596      1597      1598      1599      1600 
  0.5847767 0.2639710 0.5847767 0.5093386 0.7950139 0.2639710 0.7950139 0.5093386 
       1601      1602      1603      1604      1605      1606      1607      1608 
  0.5847767 0.9704721 0.1632496 0.3698991 0.6607947 0.7326843 0.3698991 0.3698991 
       1609      1610      1611      1612      1613      1614      1615      1616 
  0.2979029 0.5093386 0.5825445 0.3698991 0.7326843 0.2500383 0.8870283 0.5825445 
       1617      1618      1619      1620      1621      1622      1623      1624 
  0.5093386 0.2639710 0.4364813 0.1954771 0.5847767 0.7950139 0.5825445 0.5093386 
       1625      1626      1627      1628      1629      1630      1631      1632 
  0.3567994 0.2126244 0.6607947 0.7326843 0.8870283 0.7326843 0.5825445 0.4258949 
       1633      1634      1635      1636      1637      1638      1639      1640 
  0.5093386 0.6607947 0.2639710 0.7326843 0.7326843 0.7326843 0.3120550 0.5093386 
       1641      1642      1643      1644      1645      1646      1647      1648 
  0.8870283 0.6607947 0.4258949 0.6607947 0.5093386 0.7950139 0.2979029 0.7326843 
       1649      1650      1651      1652      1653      1654      1655      1656 
  0.5025621 0.5025621 0.3120550 0.7950139 0.3120550 0.5093386 0.4364813 0.5825445 
       1657      1658      1659      1660      1661      1662      1663      1664 
  0.2639710 0.4364813 0.1954771 0.7950139 0.6585473 0.7950139 0.9412824 0.5093386 
       1665      1666      1667      1668      1669      1670      1671      1672 
  0.2979029 0.5093386 0.5847767 0.8463985 0.1431489 0.6607947 0.3120550 0.3120550 
       1673      1674      1675      1676      1677      1678      1679      1680 
  0.5025621 0.2126244 0.4258949 0.5025621 0.7326843 0.5093386 0.5093386 0.7326843 
       1681      1682      1683      1684      1685      1686      1687      1688 
  0.4258949 0.2979029 0.5825445 0.7326843 0.5025621 0.4258949 0.2639710 0.2639710 
       1689      1690      1691      1692      1693      1694      1695      1696 
  0.2254449 0.7267631 0.3698991 0.5825445 0.5025621 0.2500383 0.6585473 0.3120550 
       1697      1698      1699      1700      1701      1702      1703      1704 
  0.3698991 0.6585473 0.4364813 0.4364813 0.1556872 0.1431489 0.5825445 0.5025621 
       1705      1706      1707      1708      1709      1710      1711      1712 
  0.3698991 0.2639710 0.7267631 0.6607947 0.9181070 0.5825445 0.1954771 0.3567994 
       1713      1714      1715      1716      1717      1718      1719      1720 
  0.2639710 0.5825445 0.3120550 0.4364813 0.9412824 0.5025621 0.2254449 0.2639710 
       1721      1722      1723      1724      1725      1726      1727      1728 
  0.6607947 0.2254449 0.7326843 0.3698991 0.5093386 0.6585473 0.5847767 0.2254449 
       1729      1730      1731      1732      1733      1734      1735      1736 
  0.5847767 0.1954771 0.3698991 0.4364813 0.8463985 0.5825445 0.6607947 0.5093386 
       1737      1738      1739      1740      1741      1742      1743      1744 
  0.1726988 0.6585473 0.2639710 0.5093386 0.5847767 0.2979029 0.4364813 0.9704721 
       1745      1746      1747      1748      1749      1750      1751      1752 
  0.5093386 0.3698991 0.2639710 0.3120550 0.8463985 0.1726988 0.4258949 0.7326843 
       1753      1754      1755      1756      1757      1758      1759      1760 
  0.2639710 0.9582384 0.3120550 0.6585473 0.5025621 0.2639710 0.3120550 0.7267631 
       1761      1762      1763      1764      1765      1766      1767      1768 
  0.8463985 0.2500383 0.3120550 0.5025621 0.5847767 0.8774494 0.9582384 0.6607947 
       1769      1770      1771      1772      1773      1774      1775      1776 
  0.5093386 0.8463985 0.3567994 0.2979029 0.7950139 0.5847767 0.1842596 0.8870283 
       1777      1778      1779      1780      1781      1782      1783      1784 
  0.6607947 0.4364813 0.2254449 0.3698991 0.7866563 0.2979029 0.2639710 0.5093386 
       1785      1786      1787      1788      1789      1790      1791      1792 
  0.2126244 0.1726988 0.3698991 0.6585473 0.7950139 0.7950139 0.4258949 0.5847767 
       1793      1794      1795      1796      1797      1798      1799      1800 
  0.7950139 0.5847767 0.9412824 0.6585473 0.3698991 0.7950139 0.5847767 0.5825445 
       1801      1802      1803      1804      1805      1806      1807      1808 
  0.3120550 0.5847767 0.7866563 0.3120550 0.5825445 0.5825445 0.3567994 0.5025621 
       1809      1810      1811      1812      1813      1814      1815      1816 
  0.4364813 0.5825445 0.4258949 0.8870283 0.3120550 0.5093386 0.2126244 0.3698991 
       1817      1818      1819      1820      1821      1822      1823      1824 
  0.8463985 0.2254449 0.6607947 0.2254449 0.3698991 0.9181070 0.4364813 0.3120550 
       1825      1826      1827      1828      1829      1830      1831      1832 
  0.2254449 0.2639710 0.7326843 0.7866563 0.1726988 0.1726988 0.5825445 0.5093386 
       1833      1834      1835      1836      1837      1838      1839      1840 
  0.6607947 0.3698991 0.2254449 0.2979029 0.5093386 0.3567994 0.4364813 0.5093386 
       1841      1842      1843      1844      1845      1846      1847      1848 
  0.5025621 0.7326843 0.7866563 0.3698991 0.5025621 0.7866563 0.6607947 0.1726988 
       1849      1850      1851      1852      1853      1854      1855      1856 
  0.6607947 0.1954771 0.5025621 0.2639710 0.2639710 0.6607947 0.5847767 0.8463985 
       1857      1858      1859      1860      1861      1862      1863      1864 
  0.2254449 0.3120550 0.5825445 0.4364813 0.4364813 0.3567994 0.2126244 0.2254449 
       1865      1866      1867      1868      1869      1870      1871      1872 
  0.3120550 0.7950139 0.7950139 0.4364813 0.2639710 0.5847767 0.6585473 0.5825445 
       1873      1874      1875      1876      1877      1878      1879      1880 
  0.8463985 0.6607947 0.6585473 0.3698991 0.3567994 0.6585473 0.6607947 0.7950139 
       1881      1882      1883      1884      1885      1886      1887      1888 
  0.8870283 0.5825445 0.3698991 0.2979029 0.7267631 0.6585473 0.7326843 0.4364813 
       1889      1890      1891      1892      1893      1894      1895      1896 
  0.6585473 0.4258949 0.1726988 0.5025621 0.1954771 0.5093386 0.4258949 0.5025621 
       1897      1898      1899      1900      1901      1902      1903      1904 
  0.5825445 0.5825445 0.8463985 0.5825445 0.4364813 0.5847767 0.6607947 0.3120550 
       1905      1906      1907      1908      1909      1910      1911      1912 
  0.7326843 0.7267631 0.2979029 0.7326843 0.7326843 0.3120550 0.7326843 0.6607947 
       1913      1914      1915      1916      1917      1918      1919      1920 
  0.3120550 0.8463985 0.3698991 0.5025621 0.7267631 0.7950139 0.3120550 0.7326843 
       1921      1922      1923      1924      1925      1926      1927      1928 
  0.3698991 0.3698991 0.1954771 0.1726988 0.9181070 0.2639710 0.5825445 0.3567994 
       1929      1930      1931      1932      1933      1934      1935      1936 
  0.6585473 0.4258949 0.2500383 0.5093386 0.6607947 0.2639710 0.5025621 0.5093386 
       1937      1938      1939      1940      1941      1942      1943      1944 
  0.8463985 0.2639710 0.2500383 0.5825445 0.4364813 0.5093386 0.6607947 0.2254449 
       1945      1946      1947      1948      1949      1950      1951      1952 
  0.4364813 0.8870283 0.5847767 0.7326843 0.7326843 0.3120550 0.6585473 0.9091805 
       1953      1954      1955      1956      1957      1958      1959      1960 
  0.2979029 0.7267631 0.5025621 0.4258949 0.6607947 0.3120550 0.7326843 0.7326843 
       1961      1962      1963      1964      1965      1966      1967      1968 
  0.3567994 0.8463985 0.5093386 0.5847767 0.5825445 0.3567994 0.6585473 0.7267631 
       1969      1970      1971      1972      1973      1974      1975      1976 
  0.4364813 0.8463985 0.5847767 0.5825445 0.5825445 0.1954771 0.5825445 0.7326843 
       1977      1978      1979      1980      1981      1982      1983      1984 
  0.5025621 0.4258949 0.3120550 0.1556872 0.3567994 0.6607947 0.5093386 0.3567994 
       1985      1986      1987      1988      1989      1990      1991      1992 
  0.2639710 0.3567994 0.4364813 0.7326843 0.2979029 0.8368960 0.3120550 0.6607947 
       1993      1994      1995      1996      1997      1998      1999      2000 
  0.2979029 0.7326843 0.8368960 0.5093386 0.4364813 0.7326843 0.7326843 0.7267631
Code
  summary(residuals(fit1))
Output
       Item1                Item2                Item3          
   Min.   :-0.9412824   Min.   :-0.9314870   Min.   :-0.932174  
   1st Qu.:-0.3698991   1st Qu.:-0.4272403   1st Qu.:-0.503827  
   Median : 0.0818930   Median : 0.1573856   Median : 0.177257  
   Mean   :-0.0001467   Mean   :-0.0006539   Mean   :-0.002202  
   3rd Qu.: 0.4152233   3rd Qu.: 0.3637518   3rd Qu.: 0.292406  
   Max.   : 0.8443128   Max.   : 0.8829579   Max.   : 0.653850  
       Item4               Item5               Item6           
   Min.   :-0.936174   Min.   :-0.968908   Min.   :-0.9010826  
   1st Qu.: 0.077120   1st Qu.: 0.043100   1st Qu.:-0.4807352  
   Median : 0.158674   Median : 0.108763   Median : 0.1642555  
   Mean   : 0.000033   Mean   : 0.002275   Mean   : 0.0004391  
   3rd Qu.: 0.220781   3rd Qu.: 0.186779   3rd Qu.: 0.3180502  
   Max.   : 0.590711   Max.   : 0.574219   Max.   : 0.8244711  
       Item7                Item8                Item9           
   Min.   :-0.8851430   Min.   :-0.9101997   Min.   :-0.8614888  
   1st Qu.:-0.4890386   1st Qu.:-0.4831021   1st Qu.:-0.5056860  
   Median : 0.2111020   Median : 0.2142025   Median : 0.2282535  
   Mean   : 0.0005126   Mean   : 0.0009005   Mean   : 0.0003707  
   3rd Qu.: 0.3426624   3rd Qu.: 0.3589697   3rd Qu.: 0.3974888  
   Max.   : 0.7690036   Max.   : 0.7267992   Max.   : 0.7788047  
       Item10               Item11               Item12          
   Min.   :-0.8362669   Min.   :-0.9316052   Min.   :-0.8873538  
   1st Qu.:-0.5002406   1st Qu.:-0.4619166   1st Qu.:-0.4532789  
   Median : 0.2289536   Median : 0.1821138   Median : 0.1806710  
   Mean   : 0.0004637   Mean   : 0.0003882   Mean   : 0.0006462  
   3rd Qu.: 0.4020989   3rd Qu.: 0.3379863   3rd Qu.: 0.4403448  
   Max.   : 0.7747230   Max.   : 0.8171048   Max.   : 0.7330316  
       Item13               Item14              Item15          
   Min.   :-0.9364053   Min.   :-0.846923   Min.   :-0.8203574  
   1st Qu.:-0.4702768   1st Qu.:-0.391395   1st Qu.:-0.4952739  
   Median : 0.1899360   Median :-0.206135   Median : 0.2097287  
   Mean   :-0.0001134   Mean   : 0.000785   Mean   : 0.0006185  
   3rd Qu.: 0.2708100   3rd Qu.: 0.482109   3rd Qu.: 0.4567820  
   Max.   : 0.5898026   Max.   : 0.865499   Max.   : 0.7635355  
       Item16              Item17               Item18          
   Min.   :-0.896687   Min.   :-0.7793370   Min.   :-0.8303705  
   1st Qu.:-0.380265   1st Qu.:-0.4142573   1st Qu.:-0.3447702  
   Median :-0.176930   Median :-0.2407092   Median :-0.1413968  
   Mean   : 0.001382   Mean   : 0.0005929   Mean   : 0.0007223  
   3rd Qu.: 0.465682   3rd Qu.: 0.4923666   3rd Qu.: 0.4255570  
   Max.   : 0.870413   Max.   : 0.8175671   Max.   : 0.9089239  
       Item19               Item20          
   Min.   :-0.9068390   Min.   :-0.8715910  
   1st Qu.:-0.4038863   1st Qu.:-0.3379118  
   Median :-0.1494888   Median :-0.2490140  
   Mean   : 0.0007949   Mean   : 0.0007879  
   3rd Qu.: 0.4376773   3rd Qu.: 0.4729031  
   Max.   : 0.8915756   Max.   : 0.7866203
Code
  residuals(fit1, item = 1)
Output
            1           2           3           4           5           6 
  -0.43648127  0.21334366  0.11297173 -0.22544489  0.20498605 -0.29790295 
            7           8           9          10          11          12 
   0.49066136  0.57410507  0.20498605  0.21334366  0.15360152  0.27323691 
           13          14          15          16          17          18 
  -0.43648127 -0.50256206 -0.73268430 -0.35679939  0.41745549  0.27323691 
           19          20          21          22          23          24 
  -0.43648127 -0.31205497  0.57410507  0.16310397  0.11297173  0.15360152 
           25          26          27          28          29          30 
   0.33920533  0.49743794  0.21334366 -0.50256206  0.27323691 -0.26397099 
           31          32          33          34          35          36 
  -0.50256206 -0.65854732 -0.79501395 -0.31205497  0.56351873 -0.50933864 
           37          38          39          40          41          42 
  -0.66079467  0.15360152  0.49743794 -0.58477674 -0.26397099  0.49743794 
           43          44          45          46          47          48 
  -0.50256206  0.20498605  0.20498605 -0.43648127 -0.31205497  0.49743794 
           49          50          51          52          53          54 
   0.77455511 -0.50933864  0.49066136 -0.26397099  0.82730124 -0.50933864 
           55          56          57          58          59          60 
   0.68794503  0.41745549 -0.31205497  0.49066136 -0.50933864  0.49066136 
           61          62          63          64          65          66 
   0.09081953 -0.66079467  0.68794503 -0.22544489  0.34145268 -0.73268430 
           67          68          69          70          71          72 
  -0.22544489  0.26731570 -0.14314887  0.05871759 -0.42589493 -0.22544489 
           73          74          75          76          77          78 
   0.56351873  0.41745549 -0.50256206  0.77455511  0.34145268 -0.25003829 
           79          80          81          82          83          84 
  -0.31205497  0.49743794  0.49066136 -0.58254451 -0.22544489 -0.35679939 
           85          86          87          88          89          90 
  -0.50256206 -0.65854732  0.70209705 -0.35679939 -0.43648127 -0.73268430 
           91          92          93          94          95          96 
  -0.29790295  0.27323691 -0.43648127  0.27323691  0.73602901 -0.22544489 
           97          98          99         100         101         102 
   0.63010089  0.15360152 -0.26397099  0.12255063  0.04176155  0.49066136 
          103         104         105         106         107         108 
   0.49066136  0.33920533 -0.36989911 -0.21262439  0.20498605 -0.79501395 
          109         110         111         112         113         114 
   0.33920533 -0.17269876  0.34145268 -0.43648127  0.63010089  0.15360152 
          115         116         117         118         119         120 
  -0.31205497 -0.58254451  0.68794503  0.11297173 -0.22544489  0.56351873 
          121         122         123         124         125         126 
   0.21334366 -0.43648127 -0.26397099  0.15360152 -0.26397099  0.49743794 
          127         128         129         130         131         132 
   0.73602901 -0.25003829 -0.26397099 -0.29790295  0.56351873 -0.42589493 
          133         134         135         136         137         138 
  -0.42589493  0.15360152 -0.36989911 -0.36989911 -0.18425962  0.41522326 
          139         140         141         142         143         144 
   0.26731570  0.15360152 -0.36989911  0.80452289 -0.29790295  0.20498605 
          145         146         147         148         149         150 
   0.49743794 -0.66079467  0.08189303  0.26731570 -0.22544489  0.68794503 
          151         152         153         154         155         156 
  -0.26397099 -0.22544489  0.33920533 -0.43648127  0.15360152 -0.35679939 
          157         158         159         160         161         162 
  -0.22544489  0.08189303  0.05871759  0.63010089  0.57410507  0.49066136 
          163         164         165         166         167         168 
  -0.91810697 -0.17269876  0.57410507 -0.43648127  0.33920533 -0.91810697 
          169         170         171         172         173         174 
  -0.26397099  0.20498605 -0.29790295  0.33920533 -0.58477674  0.41745549 
          175         176         177         178         179         180 
  -0.73268430  0.57410507 -0.43648127  0.21334366  0.11297173 -0.19547711 
          181         182         183         184         185         186 
   0.63010089  0.11297173  0.08189303  0.16310397 -0.58477674 -0.50256206 
          187         188         189         190         191         192 
   0.11297173 -0.35679939 -0.15568724  0.26731570 -0.31205497  0.49743794 
          193         194         195         196         197         198 
   0.26731570 -0.17269876  0.08189303  0.41745549 -0.58254451 -0.66079467 
          199         200         201         202         203         204 
   0.20498605  0.56351873 -0.31205497  0.41745549 -0.25003829  0.20498605 
          205         206         207         208         209         210 
   0.11297173 -0.73268430  0.26731570 -0.43648127  0.20498605 -0.36989911 
          211         212         213         214         215         216 
  -0.58477674  0.63010089  0.74996171 -0.50933864 -0.19547711 -0.29790295 
          217         218         219         220         221         222 
   0.26731570  0.20498605  0.05871759  0.26731570  0.41522326 -0.36989911 
          223         224         225         226         227         228 
  -0.36989911 -0.73268430 -0.36989911  0.57410507  0.26731570  0.49743794 
          229         230         231         232         233         234 
   0.41745549 -0.50933864  0.64320061  0.08189303  0.11297173  0.64320061 
          235         236         237         238         239         240 
   0.15360152 -0.73268430  0.41745549 -0.94128241 -0.31205497  0.08189303 
          241         242         243         244         245         246 
   0.26731570 -0.65854732  0.33920533  0.56351873  0.49743794 -0.31205497 
          247         248         249         250         251         252 
  -0.43648127 -0.58254451  0.41522326 -0.31205497  0.15360152  0.49743794 
          253         254         255         256         257         258 
   0.20498605 -0.66079467 -0.58477674 -0.58477674  0.33920533  0.56351873 
          259         260         261         262         263         264 
   0.27323691  0.20498605 -0.14314887  0.34145268 -0.35679939 -0.26397099 
          265         266         267         268         269         270 
   0.33920533 -0.58254451  0.15360152 -0.43648127  0.21334366 -0.17269876 
          271         272         273         274         275         276 
  -0.43648127 -0.66079467  0.20498605 -0.35679939  0.08189303 -0.31205497 
          277         278         279         280         281         282 
  -0.50933864 -0.19547711  0.64320061 -0.50933864 -0.26397099  0.26731570 
          283         284         285         286         287         288 
   0.41745549 -0.42589493 -0.58477674 -0.78665634  0.49743794 -0.79501395 
          289         290         291         292         293         294 
   0.05871759 -0.42589493 -0.42589493 -0.26397099  0.68794503 -0.58254451 
          295         296         297         298         299         300 
   0.56351873  0.15360152  0.41522326 -0.50256206  0.41522326  0.15360152 
          301         302         303         304         305         306 
   0.41522326 -0.36989911 -0.35679939 -0.25003829 -0.66079467  0.08189303 
          307         308         309         310         311         312 
   0.20498605  0.08189303  0.57410507 -0.36989911 -0.66079467 -0.26397099 
          313         314         315         316         317         318 
  -0.43648127 -0.50933864  0.12255063  0.20498605 -0.50933864 -0.65854732 
          319         320         321         322         323         324 
   0.41745549 -0.31205497  0.73602901  0.49066136  0.26731570 -0.13399692 
          325         326         327         328         329         330 
   0.34145268  0.26731570 -0.35679939  0.20498605  0.26731570 -0.17269876 
          331         332         333         334         335         336 
  -0.31205497 -0.36989911 -0.43648127  0.73602901  0.11297173  0.49743794 
          337         338         339         340         341         342 
  -0.58254451  0.56351873  0.33920533 -0.36989911 -0.66079467  0.41522326 
          343         344         345         346         347         348 
   0.20498605 -0.73268430  0.49743794  0.49743794  0.56351873  0.57410507 
          349         350         351         352         353         354 
   0.15360152 -0.26397099 -0.19547711  0.15360152 -0.58254451  0.33920533 
          355         356         357         358         359         360 
  -0.29790295  0.15360152 -0.50933864 -0.26397099 -0.29790295  0.57410507 
          361         362         363         364         365         366 
   0.21334366  0.73602901 -0.50933864 -0.29790295  0.11297173 -0.43648127 
          367         368         369         370         371         372 
  -0.35679939 -0.31205497 -0.26397099 -0.58477674 -0.35679939 -0.50933864 
          373         374         375         376         377         378 
   0.77455511 -0.42589493  0.41745549  0.68794503 -0.17269876 -0.73268430 
          379         380         381         382         383         384 
   0.49743794  0.20498605  0.15360152 -0.50933864  0.57410507 -0.58254451 
          385         386         387         388         389         390 
  -0.66079467  0.05871759 -0.50256206  0.02952791 -0.35679939 -0.15568724 
          391         392         393         394         395         396 
  -0.31205497 -0.36989911  0.27323691 -0.50933864 -0.50256206  0.63010089 
          397         398         399         400         401         402 
  -0.42589493  0.16310397 -0.83689603  0.15360152 -0.25003829 -0.31205497 
          403         404         405         406         407         408 
  -0.43648127 -0.84639848  0.08189303 -0.36989911  0.49066136  0.41522326 
          409         410         411         412         413         414 
   0.56351873  0.16310397  0.34145268  0.56351873  0.20498605 -0.42589493 
          415         416         417         418         419         420 
  -0.58254451 -0.19547711  0.49066136 -0.29790295  0.57410507  0.84431276 
          421         422         423         424         425         426 
  -0.31205497  0.34145268 -0.43648127 -0.43648127  0.49066136 -0.35679939 
          427         428         429         430         431         432 
  -0.65854732  0.34145268 -0.50933864  0.49743794 -0.36989911  0.56351873 
          433         434         435         436         437         438 
   0.49743794  0.15360152 -0.31205497  0.21334366  0.20498605  0.73602901 
          439         440         441         442         443         444 
   0.74996171 -0.50933864  0.41522326  0.49066136  0.26731570 -0.22544489 
          445         446         447         448         449         450 
  -0.31205497  0.20498605 -0.65854732 -0.65854732 -0.19547711 -0.31205497 
          451         452         453         454         455         456 
   0.41522326 -0.17269876  0.16310397  0.49066136  0.49743794  0.27323691 
          457         458         459         460         461         462 
   0.49066136  0.41522326  0.68794503  0.26731570  0.49066136  0.41522326 
          463         464         465         466         467         468 
  -0.72676309 -0.79501395  0.78737561  0.73602901 -0.50933864  0.26731570 
          469         470         471         472         473         474 
  -0.58477674  0.34145268 -0.58254451  0.33920533 -0.31205497 -0.50256206 
          475         476         477         478         479         480 
   0.20498605  0.26731570 -0.35679939 -0.50933864 -0.50933864  0.26731570 
          481         482         483         484         485         486 
   0.15360152 -0.58477674  0.20498605  0.26731570  0.49743794 -0.31205497 
          487         488         489         490         491         492 
   0.20498605 -0.66079467 -0.43648127  0.34145268 -0.73268430 -0.22544489 
          493         494         495         496         497         498 
   0.77455511 -0.31205497 -0.50256206  0.80452289  0.70209705  0.41522326 
          499         500         501         502         503         504 
  -0.50256206  0.21334366 -0.84639848 -0.25003829 -0.36989911  0.68794503 
          505         506         507         508         509         510 
  -0.50256206  0.57410507  0.68794503 -0.43648127  0.68794503  0.68794503 
          511         512         513         514         515         516 
  -0.31205497 -0.18425962 -0.21262439  0.33920533 -0.72676309 -0.29790295 
          517         518         519         520         521         522 
  -0.36989911  0.57410507 -0.26397099  0.49066136  0.41745549  0.49066136 
          523         524         525         526         527         528 
   0.09081953 -0.78665634  0.49066136  0.34145268  0.11297173 -0.58477674 
          529         530         531         532         533         534 
  -0.26397099 -0.84639848  0.15360152 -0.58477674 -0.36989911  0.57410507 
          535         536         537         538         539         540 
   0.68794503  0.33920533  0.33920533  0.26731570  0.49743794  0.49066136 
          541         542         543         544         545         546 
  -0.26397099 -0.36989911  0.34145268 -0.35679939  0.49743794  0.26731570 
          547         548         549         550         551         552 
  -0.50933864 -0.43648127 -0.36989911  0.77455511 -0.43648127 -0.22544489 
          553         554         555         556         557         558 
   0.26731570  0.56351873  0.64320061 -0.43648127  0.34145268 -0.26397099 
          559         560         561         562         563         564 
   0.33920533  0.49066136  0.15360152 -0.25003829  0.49743794  0.20498605 
          565         566         567         568         569         570 
   0.56351873  0.41522326 -0.26397099 -0.73268430  0.08189303  0.57410507 
          571         572         573         574         575         576 
  -0.50256206 -0.72676309 -0.36989911  0.56351873  0.49743794 -0.50933864 
          577         578         579         580         581         582 
  -0.36989911  0.26731570  0.82730124 -0.36989911  0.57410507 -0.19547711 
          583         584         585         586         587         588 
   0.49743794 -0.50256206  0.49066136 -0.26397099 -0.43648127 -0.15568724 
          589         590         591         592         593         594 
  -0.79501395  0.56351873  0.11297173 -0.21262439  0.64320061  0.41745549 
          595         596         597         598         599         600 
  -0.50256206  0.49743794  0.56351873 -0.22544489  0.41522326 -0.66079467 
          601         602         603         604         605         606 
   0.73602901 -0.25003829  0.63010089  0.73602901 -0.31205497  0.26731570 
          607         608         609         610         611         612 
  -0.84639848 -0.73268430  0.21334366  0.41522326  0.33920533 -0.58477674 
          613         614         615         616         617         618 
  -0.58254451  0.21334366  0.56351873 -0.15568724 -0.50256206 -0.15568724 
          619         620         621         622         623         624 
  -0.73268430 -0.29790295 -0.43648127  0.80452289 -0.43648127 -0.43648127 
          625         626         627         628         629         630 
  -0.36989911 -0.19547711 -0.79501395  0.57410507  0.11297173  0.26731570 
          631         632         633         634         635         636 
  -0.22544489 -0.66079467  0.41745549  0.20498605  0.26731570  0.15360152 
          637         638         639         640         641         642 
   0.33920533  0.26731570  0.41745549  0.11297173 -0.42589493 -0.58254451 
          643         644         645         646         647         648 
   0.41745549 -0.58477674  0.77455511 -0.35679939  0.68794503  0.64320061 
          649         650         651         652         653         654 
  -0.42589493  0.49743794 -0.87744937 -0.42589493  0.26731570  0.26731570 
          655         656         657         658         659         660 
  -0.66079467 -0.43648127 -0.79501395  0.26731570 -0.19547711  0.26731570 
          661         662         663         664         665         666 
  -0.31205497  0.20498605 -0.26397099 -0.31205497  0.68794503  0.02952791 
          667         668         669         670         671         672 
  -0.58254451  0.33920533  0.70209705 -0.22544489 -0.36989911  0.41522326 
          673         674         675         676         677         678 
  -0.43648127 -0.31205497  0.26731570 -0.58477674 -0.19547711 -0.43648127 
          679         680         681         682         683         684 
  -0.31205497  0.56351873 -0.17269876 -0.42589493 -0.31205497 -0.15568724 
          685         686         687         688         689         690 
   0.33920533 -0.88702827 -0.43648127  0.16310397 -0.31205497  0.63010089 
          691         692         693         694         695         696 
   0.15360152 -0.50933864  0.49743794 -0.50933864 -0.25003829  0.20498605 
          697         698         699         700         701         702 
   0.20498605  0.49743794  0.73602901  0.20498605  0.74996171  0.73602901 
          703         704         705         706         707         708 
   0.08189303 -0.26397099  0.63010089  0.70209705 -0.79501395 -0.42589493 
          709         710         711         712         713         714 
   0.57410507  0.68794503  0.84431276  0.11297173  0.20498605  0.41745549 
          715         716         717         718         719         720 
  -0.50933864 -0.50933864  0.41745549 -0.19547711 -0.31205497 -0.50256206 
          721         722         723         724         725         726 
   0.49066136  0.57410507 -0.50256206 -0.58254451 -0.84639848 -0.72676309 
          727         728         729         730         731         732 
  -0.19547711 -0.36989911 -0.50933864  0.33920533 -0.36989911 -0.73268430 
          733         734         735         736         737         738 
  -0.58254451  0.63010089 -0.65854732  0.63010089  0.26731570 -0.22544489 
          739         740         741         742         743         744 
  -0.35679939  0.16310397 -0.50933864 -0.58477674  0.16310397  0.26731570 
          745         746         747         748         749         750 
  -0.31205497  0.49066136 -0.25003829 -0.88702827  0.27323691 -0.29790295 
          751         752         753         754         755         756 
   0.27323691 -0.58477674 -0.58477674  0.33920533 -0.50256206  0.26731570 
          757         758         759         760         761         762 
  -0.42589493  0.63010089 -0.66079467  0.05871759 -0.22544489  0.63010089 
          763         764         765         766         767         768 
   0.34145268 -0.17269876  0.73602901 -0.31205497 -0.50256206 -0.58254451 
          769         770         771         772         773         774 
  -0.50256206 -0.35679939 -0.35679939  0.11297173  0.26731570 -0.50933864 
          775         776         777         778         779         780 
  -0.31205497 -0.35679939  0.34145268  0.26731570 -0.36989911  0.15360152 
          781         782         783         784         785         786 
   0.33920533  0.64320061  0.20498605 -0.36989911 -0.42589493  0.68794503 
          787         788         789         790         791         792 
  -0.26397099  0.49743794  0.49743794  0.41522326  0.70209705  0.15360152 
          793         794         795         796         797         798 
  -0.50256206  0.26731570 -0.19547711  0.49743794  0.56351873 -0.58254451 
          799         800         801         802         803         804 
  -0.35679939 -0.26397099  0.41745549 -0.58254451  0.20498605  0.16310397 
          805         806         807         808         809         810 
   0.27323691 -0.73268430 -0.31205497 -0.42589493 -0.26397099  0.16310397 
          811         812         813         814         815         816 
   0.15360152 -0.50933864 -0.72676309  0.20498605 -0.26397099 -0.42589493 
          817         818         819         820         821         822 
  -0.22544489 -0.50933864 -0.43648127 -0.19547711 -0.79501395  0.26731570 
          823         824         825         826         827         828 
   0.20498605  0.11297173  0.11297173  0.63010089  0.57410507 -0.19547711 
          829         830         831         832         833         834 
  -0.50256206 -0.43648127 -0.22544489 -0.25003829 -0.50933864  0.49066136 
          835         836         837         838         839         840 
  -0.31205497 -0.22544489  0.56351873 -0.35679939 -0.84639848  0.41522326 
          841         842         843         844         845         846 
   0.33920533  0.57410507 -0.73268430 -0.29790295 -0.58477674 -0.36989911 
          847         848         849         850         851         852 
  -0.26397099 -0.26397099  0.26731570 -0.17269876 -0.50256206  0.57410507 
          853         854         855         856         857         858 
  -0.58254451 -0.25003829  0.41745549 -0.36989911 -0.50933864  0.41745549 
          859         860         861         862         863         864 
   0.49066136 -0.73268430  0.49066136  0.26731570 -0.65854732  0.21334366 
          865         866         867         868         869         870 
   0.56351873 -0.58477674  0.16310397  0.49066136  0.41745549 -0.26397099 
          871         872         873         874         875         876 
   0.41745549  0.11297173  0.33920533  0.63010089  0.08189303  0.26731570 
          877         878         879         880         881         882 
   0.41745549  0.64320061  0.56351873  0.34145268 -0.36989911 -0.19547711 
          883         884         885         886         887         888 
   0.49743794  0.11297173  0.41745549  0.56351873  0.33920533  0.41745549 
          889         890         891         892         893         894 
  -0.36989911  0.20498605  0.57410507 -0.19547711  0.57410507  0.34145268 
          895         896         897         898         899         900 
   0.41522326  0.56351873 -0.31205497  0.16310397 -0.65854732  0.33920533 
          901         902         903         904         905         906 
  -0.58254451 -0.31205497  0.21334366  0.68794503  0.26731570 -0.26397099 
          907         908         909         910         911         912 
   0.26731570  0.41522326  0.68794503  0.20498605  0.33920533 -0.36989911 
          913         914         915         916         917         918 
  -0.58477674  0.41745549 -0.36989911  0.20498605  0.63010089  0.56351873 
          919         920         921         922         923         924 
   0.41522326  0.11297173 -0.58477674  0.64320061 -0.42589493 -0.50256206 
          925         926         927         928         929         930 
   0.33920533 -0.19547711  0.41745549  0.41522326  0.49743794 -0.58477674 
          931         932         933         934         935         936 
   0.26731570  0.21334366  0.41745549 -0.42589493 -0.58254451 -0.36989911 
          937         938         939         940         941         942 
  -0.58477674 -0.72676309 -0.19547711 -0.73268430 -0.50933864 -0.42589493 
          943         944         945         946         947         948 
  -0.36989911  0.11297173 -0.31205497 -0.58477674 -0.19547711 -0.25003829 
          949         950         951         952         953         954 
   0.41745549  0.49743794  0.41522326  0.49066136 -0.36989911  0.11297173 
          955         956         957         958         959         960 
   0.33920533  0.80452289 -0.50256206 -0.50933864  0.77455511  0.15360152 
          961         962         963         964         965         966 
   0.21334366 -0.26397099  0.80452289 -0.66079467 -0.22544489 -0.22544489 
          967         968         969         970         971         972 
  -0.43648127  0.34145268  0.56351873  0.73602901  0.63010089 -0.17269876 
          973         974         975         976         977         978 
  -0.58254451 -0.72676309 -0.36989911  0.33920533 -0.72676309  0.27323691 
          979         980         981         982         983         984 
   0.33920533 -0.73268430  0.34145268  0.08189303 -0.58254451 -0.79501395 
          985         986         987         988         989         990 
   0.77455511 -0.66079467 -0.58254451 -0.26397099  0.49066136  0.41522326 
          991         992         993         994         995         996 
  -0.13399692  0.41522326  0.49066136 -0.36989911  0.26731570 -0.35679939 
          997         998         999        1000        1001        1002 
  -0.91810697 -0.36989911  0.11297173  0.33920533  0.41745549  0.64320061 
         1003        1004        1005        1006        1007        1008 
  -0.22544489  0.57410507  0.26731570 -0.29790295  0.04176155 -0.66079467 
         1009        1010        1011        1012        1013        1014 
   0.41522326  0.49743794 -0.22544489 -0.66079467 -0.16324961  0.56351873 
         1015        1016        1017        1018        1019        1020 
   0.41745549  0.73602901  0.82730124  0.26731570 -0.35679939  0.41745549 
         1021        1022        1023        1024        1025        1026 
   0.26731570 -0.42589493  0.08189303  0.57410507  0.34145268  0.56351873 
         1027        1028        1029        1030        1031        1032 
   0.33920533  0.77455511 -0.31205497  0.33920533 -0.42589493  0.41522326 
         1033        1034        1035        1036        1037        1038 
   0.49066136 -0.19547711  0.27323691 -0.58254451 -0.15568724 -0.42589493 
         1039        1040        1041        1042        1043        1044 
  -0.73268430 -0.18425962  0.33920533  0.63010089 -0.42589493 -0.65854732 
         1045        1046        1047        1048        1049        1050 
   0.34145268 -0.66079467 -0.31205497  0.64320061 -0.36989911  0.20498605 
         1051        1052        1053        1054        1055        1056 
  -0.26397099  0.68794503 -0.66079467 -0.42589493  0.49066136 -0.43648127 
         1057        1058        1059        1060        1061        1062 
   0.74996171  0.56351873 -0.36989911  0.63010089 -0.29790295  0.64320061 
         1063        1064        1065        1066        1067        1068 
   0.41522326  0.49743794  0.26731570  0.26731570  0.20498605  0.15360152 
         1069        1070        1071        1072        1073        1074 
  -0.35679939 -0.66079467 -0.43648127 -0.42589493 -0.43648127 -0.15568724 
         1075        1076        1077        1078        1079        1080 
   0.20498605  0.20498605 -0.14314887  0.77455511 -0.50256206 -0.26397099 
         1081        1082        1083        1084        1085        1086 
   0.57410507  0.77455511  0.05871759 -0.17269876  0.49743794  0.73602901 
         1087        1088        1089        1090        1091        1092 
  -0.25003829  0.49743794 -0.21262439  0.57410507  0.41522326  0.20498605 
         1093        1094        1095        1096        1097        1098 
  -0.88702827  0.20498605 -0.66079467 -0.50933864 -0.58477674  0.80452289 
         1099        1100        1101        1102        1103        1104 
   0.68794503  0.68794503  0.05871759 -0.25003829  0.26731570  0.73602901 
         1105        1106        1107        1108        1109        1110 
  -0.72676309 -0.58477674 -0.31205497  0.57410507  0.49066136  0.57410507 
         1111        1112        1113        1114        1115        1116 
   0.41522326 -0.43648127 -0.36989911 -0.25003829 -0.73268430  0.34145268 
         1117        1118        1119        1120        1121        1122 
   0.49743794  0.33920533  0.49066136  0.20498605  0.11297173  0.26731570 
         1123        1124        1125        1126        1127        1128 
   0.49743794  0.33920533  0.41745549  0.41745549 -0.35679939  0.63010089 
         1129        1130        1131        1132        1133        1134 
   0.57410507  0.33920533 -0.17269876 -0.36989911  0.16310397 -0.42589493 
         1135        1136        1137        1138        1139        1140 
   0.11297173  0.57410507 -0.29790295 -0.50256206  0.74996171  0.41745549 
         1141        1142        1143        1144        1145        1146 
  -0.36989911 -0.17269876 -0.36989911  0.63010089  0.41522326 -0.58477674 
         1147        1148        1149        1150        1151        1152 
   0.20498605 -0.50933864 -0.36989911 -0.43648127  0.33920533 -0.25003829 
         1153        1154        1155        1156        1157        1158 
  -0.25003829 -0.22544489 -0.79501395  0.08189303  0.11297173 -0.43648127 
         1159        1160        1161        1162        1163        1164 
   0.08189303 -0.73268430 -0.21262439 -0.22544489  0.49743794  0.27323691 
         1165        1166        1167        1168        1169        1170 
   0.26731570 -0.21262439 -0.50256206  0.77455511  0.49743794 -0.73268430 
         1171        1172        1173        1174        1175        1176 
   0.57410507 -0.42589493  0.70209705  0.09081953  0.05871759 -0.72676309 
         1177        1178        1179        1180        1181        1182 
  -0.79501395  0.49066136 -0.15568724  0.41745549  0.20498605 -0.50256206 
         1183        1184        1185        1186        1187        1188 
   0.49743794 -0.66079467 -0.43648127 -0.58254451 -0.31205497  0.41522326 
         1189        1190        1191        1192        1193        1194 
  -0.50933864  0.57410507  0.33920533  0.12255063 -0.78665634  0.49066136 
         1195        1196        1197        1198        1199        1200 
   0.20498605  0.68794503 -0.79501395  0.56351873  0.74996171  0.21334366 
         1201        1202        1203        1204        1205        1206 
   0.34145268  0.41522326 -0.35679939  0.33920533 -0.42589493  0.11297173 
         1207        1208        1209        1210        1211        1212 
   0.08189303 -0.26397099  0.08189303  0.68794503  0.68794503 -0.66079467 
         1213        1214        1215        1216        1217        1218 
  -0.36989911  0.05871759  0.63010089  0.56351873 -0.65854732 -0.65854732 
         1219        1220        1221        1222        1223        1224 
  -0.83689603 -0.17269876 -0.50933864  0.20498605  0.56351873 -0.58254451 
         1225        1226        1227        1228        1229        1230 
  -0.31205497  0.20498605  0.63010089 -0.72676309  0.26731570  0.56351873 
         1231        1232        1233        1234        1235        1236 
   0.49066136 -0.79501395 -0.50933864 -0.73268430  0.08189303 -0.35679939 
         1237        1238        1239        1240        1241        1242 
   0.20498605 -0.42589493 -0.73268430 -0.31205497  0.41745549  0.33920533 
         1243        1244        1245        1246        1247        1248 
   0.41745549  0.26731570 -0.72676309 -0.50256206  0.27323691 -0.58254451 
         1249        1250        1251        1252        1253        1254 
   0.05871759 -0.31205497  0.68794503 -0.31205497  0.56351873 -0.50933864 
         1255        1256        1257        1258        1259        1260 
   0.63010089 -0.22544489 -0.50933864 -0.73268430  0.49743794 -0.58254451 
         1261        1262        1263        1264        1265        1266 
   0.49066136 -0.19547711 -0.31205497  0.33920533 -0.58254451 -0.17269876 
         1267        1268        1269        1270        1271        1272 
  -0.50256206  0.33920533  0.49743794 -0.29790295  0.70209705 -0.50933864 
         1273        1274        1275        1276        1277        1278 
   0.27323691 -0.35679939  0.21334366  0.26731570  0.68794503  0.15360152 
         1279        1280        1281        1282        1283        1284 
  -0.43648127 -0.65854732 -0.31205497  0.08189303 -0.17269876  0.41522326 
         1285        1286        1287        1288        1289        1290 
   0.41522326 -0.25003829  0.49743794  0.05871759 -0.17269876 -0.50933864 
         1291        1292        1293        1294        1295        1296 
  -0.84639848 -0.17269876  0.41522326  0.34145268 -0.66079467 -0.43648127 
         1297        1298        1299        1300        1301        1302 
   0.34145268  0.15360152  0.63010089 -0.58477674  0.20498605 -0.17269876 
         1303        1304        1305        1306        1307        1308 
   0.20498605 -0.31205497  0.21334366 -0.66079467 -0.26397099 -0.58254451 
         1309        1310        1311        1312        1313        1314 
  -0.50256206  0.15360152  0.15360152  0.57410507 -0.36989911  0.77455511 
         1315        1316        1317        1318        1319        1320 
  -0.50933864 -0.73268430  0.20498605  0.11297173  0.27323691  0.33920533 
         1321        1322        1323        1324        1325        1326 
   0.41522326  0.63010089 -0.50256206  0.20498605 -0.65854732 -0.26397099 
         1327        1328        1329        1330        1331        1332 
   0.68794503  0.49066136  0.15360152  0.70209705  0.34145268 -0.50256206 
         1333        1334        1335        1336        1337        1338 
  -0.73268430  0.63010089 -0.50256206  0.20498605  0.73602901  0.41745549 
         1339        1340        1341        1342        1343        1344 
   0.20498605  0.73602901  0.68794503  0.08189303  0.41745549 -0.29790295 
         1345        1346        1347        1348        1349        1350 
   0.41745549 -0.43648127 -0.50256206  0.77455511 -0.31205497  0.49066136 
         1351        1352        1353        1354        1355        1356 
   0.63010089 -0.50256206  0.11297173  0.21334366 -0.35679939  0.41522326 
         1357        1358        1359        1360        1361        1362 
  -0.50933864  0.41745549  0.21334366  0.15360152 -0.26397099  0.33920533 
         1363        1364        1365        1366        1367        1368 
   0.41745549  0.77455511  0.49066136  0.33920533  0.08189303  0.63010089 
         1369        1370        1371        1372        1373        1374 
   0.33920533  0.08189303  0.34145268  0.33920533  0.09081953 -0.31205497 
         1375        1376        1377        1378        1379        1380 
   0.56351873  0.49066136  0.20498605 -0.43648127 -0.58254451 -0.42589493 
         1381        1382        1383        1384        1385        1386 
  -0.22544489 -0.50256206 -0.58254451 -0.19547711  0.20498605 -0.31205497 
         1387        1388        1389        1390        1391        1392 
  -0.36989911 -0.19547711 -0.15568724  0.20498605  0.49066136 -0.50933864 
         1393        1394        1395        1396        1397        1398 
   0.26731570  0.21334366  0.21334366  0.26731570 -0.42589493  0.41522326 
         1399        1400        1401        1402        1403        1404 
  -0.43648127 -0.21262439  0.20498605  0.02952791 -0.42589493  0.20498605 
         1405        1406        1407        1408        1409        1410 
  -0.36989911  0.63010089 -0.66079467 -0.50933864  0.12255063  0.20498605 
         1411        1412        1413        1414        1415        1416 
  -0.25003829  0.49743794 -0.26397099 -0.35679939 -0.42589493 -0.91810697 
         1417        1418        1419        1420        1421        1422 
   0.34145268 -0.73268430 -0.21262439 -0.58477674 -0.31205497  0.49066136 
         1423        1424        1425        1426        1427        1428 
   0.56351873  0.15360152  0.33920533  0.26731570  0.33920533 -0.29790295 
         1429        1430        1431        1432        1433        1434 
  -0.42589493 -0.19547711 -0.72676309 -0.31205497  0.41745549  0.49743794 
         1435        1436        1437        1438        1439        1440 
  -0.42589493  0.80452289 -0.73268430  0.04176155  0.26731570  0.49743794 
         1441        1442        1443        1444        1445        1446 
   0.80452289 -0.73268430 -0.58477674  0.41745549  0.15360152 -0.26397099 
         1447        1448        1449        1450        1451        1452 
   0.21334366  0.64320061  0.33920533  0.27323691 -0.88702827 -0.43648127 
         1453        1454        1455        1456        1457        1458 
  -0.36989911  0.57410507  0.41522326  0.34145268 -0.73268430 -0.31205497 
         1459        1460        1461        1462        1463        1464 
   0.49066136 -0.25003829  0.49743794 -0.58477674  0.68794503  0.73602901 
         1465        1466        1467        1468        1469        1470 
   0.20498605  0.49066136  0.49066136 -0.50933864 -0.66079467  0.80452289 
         1471        1472        1473        1474        1475        1476 
  -0.50256206  0.16310397 -0.21262439  0.20498605 -0.36989911 -0.29790295 
         1477        1478        1479        1480        1481        1482 
  -0.73268430 -0.15568724  0.15360152  0.26731570  0.63010089 -0.84639848 
         1483        1484        1485        1486        1487        1488 
   0.63010089  0.04176155  0.56351873 -0.50933864 -0.29790295  0.27323691 
         1489        1490        1491        1492        1493        1494 
   0.56351873 -0.66079467  0.33920533 -0.31205497 -0.50933864  0.26731570 
         1495        1496        1497        1498        1499        1500 
  -0.58254451 -0.36989911 -0.43648127  0.20498605  0.33920533 -0.58254451 
         1501        1502        1503        1504        1505        1506 
   0.26731570 -0.50933864  0.08189303  0.80452289  0.20498605 -0.66079467 
         1507        1508        1509        1510        1511        1512 
  -0.22544489 -0.50933864 -0.19547711 -0.50933864 -0.26397099 -0.43648127 
         1513        1514        1515        1516        1517        1518 
   0.63010089 -0.26397099  0.41745549  0.57410507 -0.58254451  0.49743794 
         1519        1520        1521        1522        1523        1524 
  -0.17269876  0.26731570 -0.43648127  0.34145268  0.49743794  0.20498605 
         1525        1526        1527        1528        1529        1530 
  -0.50933864  0.33920533 -0.25003829  0.33920533 -0.58254451  0.33920533 
         1531        1532        1533        1534        1535        1536 
   0.57410507  0.21334366  0.26731570 -0.43648127 -0.31205497  0.05871759 
         1537        1538        1539        1540        1541        1542 
  -0.26397099  0.49743794  0.33920533  0.41745549  0.15360152 -0.66079467 
         1543        1544        1545        1546        1547        1548 
  -0.25003829 -0.36989911  0.15360152  0.15360152 -0.31205497  0.33920533 
         1549        1550        1551        1552        1553        1554 
  -0.66079467 -0.17269876  0.73602901 -0.22544489 -0.29790295  0.63010089 
         1555        1556        1557        1558        1559        1560 
  -0.43648127 -0.31205497  0.41522326  0.77455511  0.34145268  0.64320061 
         1561        1562        1563        1564        1565        1566 
  -0.18425962  0.41522326 -0.94128241  0.41522326  0.34145268  0.33920533 
         1567        1568        1569        1570        1571        1572 
   0.49743794 -0.94128241  0.82730124 -0.43648127  0.20498605  0.34145268 
         1573        1574        1575        1576        1577        1578 
   0.26731570 -0.43648127 -0.36989911  0.41522326 -0.31205497 -0.58477674 
         1579        1580        1581        1582        1583        1584 
   0.41522326 -0.84639848 -0.25003829 -0.36989911  0.16310397  0.82730124 
         1585        1586        1587        1588        1589        1590 
   0.11297173  0.27323691 -0.58477674 -0.29790295 -0.19547711  0.26731570 
         1591        1592        1593        1594        1595        1596 
   0.26731570 -0.35679939  0.41522326 -0.26397099 -0.58477674 -0.50933864 
         1597        1598        1599        1600        1601        1602 
  -0.79501395 -0.26397099  0.20498605 -0.50933864  0.41522326  0.02952791 
         1603        1604        1605        1606        1607        1608 
  -0.16324961 -0.36989911  0.33920533  0.26731570  0.63010089 -0.36989911 
         1609        1610        1611        1612        1613        1614 
  -0.29790295  0.49066136  0.41745549 -0.36989911  0.26731570  0.74996171 
         1615        1616        1617        1618        1619        1620 
   0.11297173 -0.58254451  0.49066136 -0.26397099 -0.43648127 -0.19547711 
         1621        1622        1623        1624        1625        1626 
  -0.58477674  0.20498605  0.41745549  0.49066136 -0.35679939  0.78737561 
         1627        1628        1629        1630        1631        1632 
   0.33920533  0.26731570  0.11297173 -0.73268430  0.41745549 -0.42589493 
         1633        1634        1635        1636        1637        1638 
   0.49066136 -0.66079467 -0.26397099 -0.73268430  0.26731570 -0.73268430 
         1639        1640        1641        1642        1643        1644 
  -0.31205497  0.49066136  0.11297173 -0.66079467  0.57410507  0.33920533 
         1645        1646        1647        1648        1649        1650 
  -0.50933864  0.20498605  0.70209705 -0.73268430 -0.50256206  0.49743794 
         1651        1652        1653        1654        1655        1656 
   0.68794503  0.20498605 -0.31205497 -0.50933864  0.56351873  0.41745549 
         1657        1658        1659        1660        1661        1662 
  -0.26397099  0.56351873 -0.19547711 -0.79501395 -0.65854732  0.20498605 
         1663        1664        1665        1666        1667        1668 
   0.05871759 -0.50933864  0.70209705  0.49066136  0.41522326  0.15360152 
         1669        1670        1671        1672        1673        1674 
  -0.14314887  0.33920533 -0.31205497  0.68794503 -0.50256206  0.78737561 
         1675        1676        1677        1678        1679        1680 
  -0.42589493 -0.50256206 -0.73268430 -0.50933864  0.49066136  0.26731570 
         1681        1682        1683        1684        1685        1686 
  -0.42589493 -0.29790295 -0.58254451  0.26731570  0.49743794 -0.42589493 
         1687        1688        1689        1690        1691        1692 
   0.73602901 -0.26397099  0.77455511  0.27323691 -0.36989911  0.41745549 
         1693        1694        1695        1696        1697        1698 
   0.49743794 -0.25003829  0.34145268 -0.31205497  0.63010089  0.34145268 
         1699        1700        1701        1702        1703        1704 
  -0.43648127  0.56351873 -0.15568724 -0.14314887  0.41745549 -0.50256206 
         1705        1706        1707        1708        1709        1710 
  -0.36989911 -0.26397099  0.27323691  0.33920533 -0.91810697 -0.58254451 
         1711        1712        1713        1714        1715        1716 
  -0.19547711  0.64320061 -0.26397099 -0.58254451 -0.31205497 -0.43648127 
         1717        1718        1719        1720        1721        1722 
   0.05871759 -0.50256206 -0.22544489 -0.26397099  0.33920533 -0.22544489 
         1723        1724        1725        1726        1727        1728 
  -0.73268430 -0.36989911  0.49066136  0.34145268  0.41522326 -0.22544489 
         1729        1730        1731        1732        1733        1734 
   0.41522326 -0.19547711 -0.36989911  0.56351873  0.15360152  0.41745549 
         1735        1736        1737        1738        1739        1740 
   0.33920533 -0.50933864 -0.17269876 -0.65854732 -0.26397099  0.49066136 
         1741        1742        1743        1744        1745        1746 
  -0.58477674 -0.29790295 -0.43648127  0.02952791  0.49066136 -0.36989911 
         1747        1748        1749        1750        1751        1752 
  -0.26397099 -0.31205497  0.15360152 -0.17269876 -0.42589493  0.26731570 
         1753        1754        1755        1756        1757        1758 
  -0.26397099  0.04176155  0.68794503  0.34145268 -0.50256206 -0.26397099 
         1759        1760        1761        1762        1763        1764 
  -0.31205497  0.27323691  0.15360152 -0.25003829 -0.31205497  0.49743794 
         1765        1766        1767        1768        1769        1770 
   0.41522326  0.12255063  0.04176155  0.33920533 -0.50933864  0.15360152 
         1771        1772        1773        1774        1775        1776 
  -0.35679939 -0.29790295  0.20498605  0.41522326 -0.18425962  0.11297173 
         1777        1778        1779        1780        1781        1782 
  -0.66079467  0.56351873 -0.22544489  0.63010089  0.21334366 -0.29790295 
         1783        1784        1785        1786        1787        1788 
   0.73602901  0.49066136 -0.21262439 -0.17269876 -0.36989911  0.34145268 
         1789        1790        1791        1792        1793        1794 
   0.20498605  0.20498605 -0.42589493  0.41522326 -0.79501395  0.41522326 
         1795        1796        1797        1798        1799        1800 
   0.05871759  0.34145268  0.63010089  0.20498605  0.41522326  0.41745549 
         1801        1802        1803        1804        1805        1806 
  -0.31205497 -0.58477674  0.21334366 -0.31205497 -0.58254451 -0.58254451 
         1807        1808        1809        1810        1811        1812 
   0.64320061  0.49743794 -0.43648127 -0.58254451 -0.42589493  0.11297173 
         1813        1814        1815        1816        1817        1818 
  -0.31205497  0.49066136 -0.21262439 -0.36989911  0.15360152 -0.22544489 
         1819        1820        1821        1822        1823        1824 
   0.33920533  0.77455511  0.63010089  0.08189303  0.56351873  0.68794503 
         1825        1826        1827        1828        1829        1830 
  -0.22544489 -0.26397099  0.26731570 -0.78665634  0.82730124 -0.17269876 
         1831        1832        1833        1834        1835        1836 
  -0.58254451  0.49066136  0.33920533 -0.36989911 -0.22544489 -0.29790295 
         1837        1838        1839        1840        1841        1842 
   0.49066136 -0.35679939 -0.43648127 -0.50933864 -0.50256206  0.26731570 
         1843        1844        1845        1846        1847        1848 
   0.21334366 -0.36989911  0.49743794  0.21334366  0.33920533 -0.17269876 
         1849        1850        1851        1852        1853        1854 
  -0.66079467 -0.19547711 -0.50256206 -0.26397099 -0.26397099  0.33920533 
         1855        1856        1857        1858        1859        1860 
  -0.58477674  0.15360152 -0.22544489 -0.31205497 -0.58254451  0.56351873 
         1861        1862        1863        1864        1865        1866 
  -0.43648127 -0.35679939 -0.21262439 -0.22544489  0.68794503  0.20498605 
         1867        1868        1869        1870        1871        1872 
   0.20498605  0.56351873 -0.26397099 -0.58477674 -0.65854732 -0.58254451 
         1873        1874        1875        1876        1877        1878 
   0.15360152 -0.66079467  0.34145268  0.63010089  0.64320061  0.34145268 
         1879        1880        1881        1882        1883        1884 
   0.33920533  0.20498605  0.11297173 -0.58254451 -0.36989911 -0.29790295 
         1885        1886        1887        1888        1889        1890 
   0.27323691 -0.65854732  0.26731570  0.56351873 -0.65854732  0.57410507 
         1891        1892        1893        1894        1895        1896 
  -0.17269876  0.49743794 -0.19547711  0.49066136  0.57410507 -0.50256206 
         1897        1898        1899        1900        1901        1902 
   0.41745549 -0.58254451  0.15360152 -0.58254451 -0.43648127 -0.58477674 
         1903        1904        1905        1906        1907        1908 
   0.33920533 -0.31205497  0.26731570 -0.72676309 -0.29790295  0.26731570 
         1909        1910        1911        1912        1913        1914 
   0.26731570 -0.31205497  0.26731570  0.33920533 -0.31205497  0.15360152 
         1915        1916        1917        1918        1919        1920 
   0.63010089 -0.50256206  0.27323691  0.20498605 -0.31205497  0.26731570 
         1921        1922        1923        1924        1925        1926 
  -0.36989911  0.63010089 -0.19547711 -0.17269876  0.08189303 -0.26397099 
         1927        1928        1929        1930        1931        1932 
   0.41745549  0.64320061  0.34145268  0.57410507 -0.25003829  0.49066136 
         1933        1934        1935        1936        1937        1938 
   0.33920533 -0.26397099 -0.50256206 -0.50933864  0.15360152  0.73602901 
         1939        1940        1941        1942        1943        1944 
  -0.25003829  0.41745549  0.56351873  0.49066136  0.33920533 -0.22544489 
         1945        1946        1947        1948        1949        1950 
  -0.43648127  0.11297173 -0.58477674  0.26731570  0.26731570 -0.31205497 
         1951        1952        1953        1954        1955        1956 
   0.34145268  0.09081953  0.70209705  0.27323691 -0.50256206 -0.42589493 
         1957        1958        1959        1960        1961        1962 
   0.33920533  0.68794503  0.26731570  0.26731570 -0.35679939  0.15360152 
         1963        1964        1965        1966        1967        1968 
  -0.50933864  0.41522326 -0.58254451  0.64320061  0.34145268  0.27323691 
         1969        1970        1971        1972        1973        1974 
  -0.43648127  0.15360152  0.41522326 -0.58254451  0.41745549 -0.19547711 
         1975        1976        1977        1978        1979        1980 
  -0.58254451  0.26731570 -0.50256206 -0.42589493 -0.31205497 -0.15568724 
         1981        1982        1983        1984        1985        1986 
  -0.35679939  0.33920533 -0.50933864  0.64320061 -0.26397099  0.64320061 
         1987        1988        1989        1990        1991        1992 
   0.56351873  0.26731570  0.70209705  0.16310397  0.68794503  0.33920533 
         1993        1994        1995        1996        1997        1998 
  -0.29790295  0.26731570  0.16310397 -0.50933864 -0.43648127  0.26731570 
         1999        2000 
   0.26731570  0.27323691
Code
  summary(predict(fit1))
Output
        item           match         group          prob        
   Item1  : 2000   Min.   :-2.7699   0:20000   Min.   :0.06246  
   Item2  : 2000   1st Qu.:-0.5161   1:20000   1st Qu.:0.43153  
   Item3  : 2000   Median : 0.1278             Median :0.59037  
   Item4  : 2000   Mean   : 0.0000             Mean   :0.57972  
   Item5  : 2000   3rd Qu.: 0.7718             3rd Qu.:0.74058  
   Item6  : 2000   Max.   : 2.7036             Max.   :0.98863  
   (Other):28000
Code
  predict(fit1, item = 1)
Output
        item      match group      prob
  1    Item1  0.1278239     1 0.4364813
  2    Item1  1.7376967     1 0.7866563
  3    Item1  1.4157221     0 0.8870283
  4    Item1 -1.1600743     1 0.2254449
  5    Item1  0.7717730     0 0.7950139
  6    Item1 -1.4820489     0 0.2979029
  7    Item1  0.4497985     1 0.5093386
  8    Item1 -0.8380998     0 0.4258949
  9    Item1  0.7717730     0 0.7950139
  10   Item1  1.7376967     1 0.7866563
  11   Item1  1.0937476     0 0.8463985
  12   Item1  1.4157221     1 0.7267631
  13   Item1  0.1278239     1 0.4364813
  14   Item1 -0.5161252     0 0.5025621
  15   Item1  0.4497985     0 0.7326843
  16   Item1 -1.1600743     0 0.3567994
  17   Item1 -0.1941507     0 0.5825445
  18   Item1  1.4157221     1 0.7267631
  19   Item1  0.1278239     1 0.4364813
  20   Item1 -0.5161252     1 0.3120550
  21   Item1 -0.8380998     0 0.4258949
  22   Item1  2.0596712     1 0.8368960
  23   Item1  1.4157221     0 0.8870283
  24   Item1  1.0937476     0 0.8463985
  25   Item1  0.1278239     0 0.6607947
  26   Item1 -0.5161252     0 0.5025621
  27   Item1  1.7376967     1 0.7866563
  28   Item1 -0.5161252     0 0.5025621
  29   Item1  1.4157221     1 0.7267631
  30   Item1 -0.8380998     1 0.2639710
  31   Item1 -0.5161252     0 0.5025621
  32   Item1  1.0937476     1 0.6585473
  33   Item1  0.7717730     0 0.7950139
  34   Item1 -0.5161252     1 0.3120550
  35   Item1  0.1278239     1 0.4364813
  36   Item1  0.4497985     1 0.5093386
  37   Item1  0.1278239     0 0.6607947
  38   Item1  1.0937476     0 0.8463985
  39   Item1 -0.5161252     0 0.5025621
  40   Item1  0.7717730     1 0.5847767
  41   Item1 -0.8380998     1 0.2639710
  42   Item1 -0.5161252     0 0.5025621
  43   Item1 -0.5161252     0 0.5025621
  44   Item1  0.7717730     0 0.7950139
  45   Item1  0.7717730     0 0.7950139
  46   Item1  0.1278239     1 0.4364813
  47   Item1 -0.5161252     1 0.3120550
  48   Item1 -0.5161252     0 0.5025621
  49   Item1 -1.1600743     1 0.2254449
  50   Item1  0.4497985     1 0.5093386
  51   Item1  0.4497985     1 0.5093386
  52   Item1 -0.8380998     1 0.2639710
  53   Item1 -1.8040234     1 0.1726988
  54   Item1  0.4497985     1 0.5093386
  55   Item1 -0.5161252     1 0.3120550
  56   Item1 -0.1941507     0 0.5825445
  57   Item1 -0.5161252     1 0.3120550
  58   Item1  0.4497985     1 0.5093386
  59   Item1  0.4497985     1 0.5093386
  60   Item1  0.4497985     1 0.5093386
  61   Item1  2.7036203     1 0.9091805
  62   Item1  0.1278239     0 0.6607947
  63   Item1 -0.5161252     1 0.3120550
  64   Item1 -1.1600743     1 0.2254449
  65   Item1  1.0937476     1 0.6585473
  66   Item1  0.4497985     0 0.7326843
  67   Item1 -1.1600743     1 0.2254449
  68   Item1  0.4497985     0 0.7326843
  69   Item1 -2.4479725     1 0.1431489
  70   Item1  2.0596712     0 0.9412824
  71   Item1 -0.8380998     0 0.4258949
  72   Item1 -1.1600743     1 0.2254449
  73   Item1  0.1278239     1 0.4364813
  74   Item1 -0.1941507     0 0.5825445
  75   Item1 -0.5161252     0 0.5025621
  76   Item1 -1.1600743     1 0.2254449
  77   Item1  1.0937476     1 0.6585473
  78   Item1 -1.8040234     0 0.2500383
  79   Item1 -0.5161252     1 0.3120550
  80   Item1 -0.5161252     0 0.5025621
  81   Item1  0.4497985     1 0.5093386
  82   Item1 -0.1941507     0 0.5825445
  83   Item1 -1.1600743     1 0.2254449
  84   Item1 -1.1600743     0 0.3567994
  85   Item1 -0.5161252     0 0.5025621
  86   Item1  1.0937476     1 0.6585473
  87   Item1 -1.4820489     0 0.2979029
  88   Item1 -1.1600743     0 0.3567994
  89   Item1  0.1278239     1 0.4364813
  90   Item1  0.4497985     0 0.7326843
  91   Item1 -1.4820489     0 0.2979029
  92   Item1  1.4157221     1 0.7267631
  93   Item1  0.1278239     1 0.4364813
  94   Item1  1.4157221     1 0.7267631
  95   Item1 -0.8380998     1 0.2639710
  96   Item1 -1.1600743     1 0.2254449
  97   Item1 -0.1941507     1 0.3698991
  98   Item1  1.0937476     0 0.8463985
  99   Item1 -0.8380998     1 0.2639710
  100  Item1  2.3816458     1 0.8774494
  101  Item1  2.3816458     0 0.9582384
  102  Item1  0.4497985     1 0.5093386
  103  Item1  0.4497985     1 0.5093386
  104  Item1  0.1278239     0 0.6607947
  105  Item1 -0.1941507     1 0.3698991
  106  Item1 -2.1259980     0 0.2126244
  107  Item1  0.7717730     0 0.7950139
  108  Item1  0.7717730     0 0.7950139
  109  Item1  0.1278239     0 0.6607947
  110  Item1 -1.8040234     1 0.1726988
  111  Item1  1.0937476     1 0.6585473
  112  Item1  0.1278239     1 0.4364813
  113  Item1 -0.1941507     1 0.3698991
  114  Item1  1.0937476     0 0.8463985
  115  Item1 -0.5161252     1 0.3120550
  116  Item1 -0.1941507     0 0.5825445
  117  Item1 -0.5161252     1 0.3120550
  118  Item1  1.4157221     0 0.8870283
  119  Item1 -1.1600743     1 0.2254449
  120  Item1  0.1278239     1 0.4364813
  121  Item1  1.7376967     1 0.7866563
  122  Item1  0.1278239     1 0.4364813
  123  Item1 -0.8380998     1 0.2639710
  124  Item1  1.0937476     0 0.8463985
  125  Item1 -0.8380998     1 0.2639710
  126  Item1 -0.5161252     0 0.5025621
  127  Item1 -0.8380998     1 0.2639710
  128  Item1 -1.8040234     0 0.2500383
  129  Item1 -0.8380998     1 0.2639710
  130  Item1 -1.4820489     0 0.2979029
  131  Item1  0.1278239     1 0.4364813
  132  Item1 -0.8380998     0 0.4258949
  133  Item1 -0.8380998     0 0.4258949
  134  Item1  1.0937476     0 0.8463985
  135  Item1 -0.1941507     1 0.3698991
  136  Item1 -0.1941507     1 0.3698991
  137  Item1 -2.4479725     0 0.1842596
  138  Item1  0.7717730     1 0.5847767
  139  Item1  0.4497985     0 0.7326843
  140  Item1  1.0937476     0 0.8463985
  141  Item1 -0.1941507     1 0.3698991
  142  Item1 -1.4820489     1 0.1954771
  143  Item1 -1.4820489     0 0.2979029
  144  Item1  0.7717730     0 0.7950139
  145  Item1 -0.5161252     0 0.5025621
  146  Item1  0.1278239     0 0.6607947
  147  Item1  1.7376967     0 0.9181070
  148  Item1  0.4497985     0 0.7326843
  149  Item1 -1.1600743     1 0.2254449
  150  Item1 -0.5161252     1 0.3120550
  151  Item1 -0.8380998     1 0.2639710
  152  Item1 -1.1600743     1 0.2254449
  153  Item1  0.1278239     0 0.6607947
  154  Item1  0.1278239     1 0.4364813
  155  Item1  1.0937476     0 0.8463985
  156  Item1 -1.1600743     0 0.3567994
  157  Item1 -1.1600743     1 0.2254449
  158  Item1  1.7376967     0 0.9181070
  159  Item1  2.0596712     0 0.9412824
  160  Item1 -0.1941507     1 0.3698991
  161  Item1 -0.8380998     0 0.4258949
  162  Item1  0.4497985     1 0.5093386
  163  Item1  1.7376967     0 0.9181070
  164  Item1 -1.8040234     1 0.1726988
  165  Item1 -0.8380998     0 0.4258949
  166  Item1  0.1278239     1 0.4364813
  167  Item1  0.1278239     0 0.6607947
  168  Item1  1.7376967     0 0.9181070
  169  Item1 -0.8380998     1 0.2639710
  170  Item1  0.7717730     0 0.7950139
  171  Item1 -1.4820489     0 0.2979029
  172  Item1  0.1278239     0 0.6607947
  173  Item1  0.7717730     1 0.5847767
  174  Item1 -0.1941507     0 0.5825445
  175  Item1  0.4497985     0 0.7326843
  176  Item1 -0.8380998     0 0.4258949
  177  Item1  0.1278239     1 0.4364813
  178  Item1  1.7376967     1 0.7866563
  179  Item1  1.4157221     0 0.8870283
  180  Item1 -1.4820489     1 0.1954771
  181  Item1 -0.1941507     1 0.3698991
  182  Item1  1.4157221     0 0.8870283
  183  Item1  1.7376967     0 0.9181070
  184  Item1  2.0596712     1 0.8368960
  185  Item1  0.7717730     1 0.5847767
  186  Item1 -0.5161252     0 0.5025621
  187  Item1  1.4157221     0 0.8870283
  188  Item1 -1.1600743     0 0.3567994
  189  Item1 -2.1259980     1 0.1556872
  190  Item1  0.4497985     0 0.7326843
  191  Item1 -0.5161252     1 0.3120550
  192  Item1 -0.5161252     0 0.5025621
  193  Item1  0.4497985     0 0.7326843
  194  Item1 -1.8040234     1 0.1726988
  195  Item1  1.7376967     0 0.9181070
  196  Item1 -0.1941507     0 0.5825445
  197  Item1 -0.1941507     0 0.5825445
  198  Item1  0.1278239     0 0.6607947
  199  Item1  0.7717730     0 0.7950139
  200  Item1  0.1278239     1 0.4364813
  201  Item1 -0.5161252     1 0.3120550
  202  Item1 -0.1941507     0 0.5825445
  203  Item1 -1.8040234     0 0.2500383
  204  Item1  0.7717730     0 0.7950139
  205  Item1  1.4157221     0 0.8870283
  206  Item1  0.4497985     0 0.7326843
  207  Item1  0.4497985     0 0.7326843
  208  Item1  0.1278239     1 0.4364813
  209  Item1  0.7717730     0 0.7950139
  210  Item1 -0.1941507     1 0.3698991
  211  Item1  0.7717730     1 0.5847767
  212  Item1 -0.1941507     1 0.3698991
  213  Item1 -1.8040234     0 0.2500383
  214  Item1  0.4497985     1 0.5093386
  215  Item1 -1.4820489     1 0.1954771
  216  Item1 -1.4820489     0 0.2979029
  217  Item1  0.4497985     0 0.7326843
  218  Item1  0.7717730     0 0.7950139
  219  Item1  2.0596712     0 0.9412824
  220  Item1  0.4497985     0 0.7326843
  221  Item1  0.7717730     1 0.5847767
  222  Item1 -0.1941507     1 0.3698991
  223  Item1 -0.1941507     1 0.3698991
  224  Item1  0.4497985     0 0.7326843
  225  Item1 -0.1941507     1 0.3698991
  226  Item1 -0.8380998     0 0.4258949
  227  Item1  0.4497985     0 0.7326843
  228  Item1 -0.5161252     0 0.5025621
  229  Item1 -0.1941507     0 0.5825445
  230  Item1  0.4497985     1 0.5093386
  231  Item1 -1.1600743     0 0.3567994
  232  Item1  1.7376967     0 0.9181070
  233  Item1  1.4157221     0 0.8870283
  234  Item1 -1.1600743     0 0.3567994
  235  Item1  1.0937476     0 0.8463985
  236  Item1  0.4497985     0 0.7326843
  237  Item1 -0.1941507     0 0.5825445
  238  Item1  2.0596712     0 0.9412824
  239  Item1 -0.5161252     1 0.3120550
  240  Item1  1.7376967     0 0.9181070
  241  Item1  0.4497985     0 0.7326843
  242  Item1  1.0937476     1 0.6585473
  243  Item1  0.1278239     0 0.6607947
  244  Item1  0.1278239     1 0.4364813
  245  Item1 -0.5161252     0 0.5025621
  246  Item1 -0.5161252     1 0.3120550
  247  Item1  0.1278239     1 0.4364813
  248  Item1 -0.1941507     0 0.5825445
  249  Item1  0.7717730     1 0.5847767
  250  Item1 -0.5161252     1 0.3120550
  251  Item1  1.0937476     0 0.8463985
  252  Item1 -0.5161252     0 0.5025621
  253  Item1  0.7717730     0 0.7950139
  254  Item1  0.1278239     0 0.6607947
  255  Item1  0.7717730     1 0.5847767
  256  Item1  0.7717730     1 0.5847767
  257  Item1  0.1278239     0 0.6607947
  258  Item1  0.1278239     1 0.4364813
  259  Item1  1.4157221     1 0.7267631
  260  Item1  0.7717730     0 0.7950139
  261  Item1 -2.4479725     1 0.1431489
  262  Item1  1.0937476     1 0.6585473
  263  Item1 -1.1600743     0 0.3567994
  264  Item1 -0.8380998     1 0.2639710
  265  Item1  0.1278239     0 0.6607947
  266  Item1 -0.1941507     0 0.5825445
  267  Item1  1.0937476     0 0.8463985
  268  Item1  0.1278239     1 0.4364813
  269  Item1  1.7376967     1 0.7866563
  270  Item1 -1.8040234     1 0.1726988
  271  Item1  0.1278239     1 0.4364813
  272  Item1  0.1278239     0 0.6607947
  273  Item1  0.7717730     0 0.7950139
  274  Item1 -1.1600743     0 0.3567994
  275  Item1  1.7376967     0 0.9181070
  276  Item1 -0.5161252     1 0.3120550
  277  Item1  0.4497985     1 0.5093386
  278  Item1 -1.4820489     1 0.1954771
  279  Item1 -1.1600743     0 0.3567994
  280  Item1  0.4497985     1 0.5093386
  281  Item1 -0.8380998     1 0.2639710
  282  Item1  0.4497985     0 0.7326843
  283  Item1 -0.1941507     0 0.5825445
  284  Item1 -0.8380998     0 0.4258949
  285  Item1  0.7717730     1 0.5847767
  286  Item1  1.7376967     1 0.7866563
  287  Item1 -0.5161252     0 0.5025621
  288  Item1  0.7717730     0 0.7950139
  289  Item1  2.0596712     0 0.9412824
  290  Item1 -0.8380998     0 0.4258949
  291  Item1 -0.8380998     0 0.4258949
  292  Item1 -0.8380998     1 0.2639710
  293  Item1 -0.5161252     1 0.3120550
  294  Item1 -0.1941507     0 0.5825445
  295  Item1  0.1278239     1 0.4364813
  296  Item1  1.0937476     0 0.8463985
  297  Item1  0.7717730     1 0.5847767
  298  Item1 -0.5161252     0 0.5025621
  299  Item1  0.7717730     1 0.5847767
  300  Item1  1.0937476     0 0.8463985
  301  Item1  0.7717730     1 0.5847767
  302  Item1 -0.1941507     1 0.3698991
  303  Item1 -1.1600743     0 0.3567994
  304  Item1 -1.8040234     0 0.2500383
  305  Item1  0.1278239     0 0.6607947
  306  Item1  1.7376967     0 0.9181070
  307  Item1  0.7717730     0 0.7950139
  308  Item1  1.7376967     0 0.9181070
  309  Item1 -0.8380998     0 0.4258949
  310  Item1 -0.1941507     1 0.3698991
  311  Item1  0.1278239     0 0.6607947
  312  Item1 -0.8380998     1 0.2639710
  313  Item1  0.1278239     1 0.4364813
  314  Item1  0.4497985     1 0.5093386
  315  Item1  2.3816458     1 0.8774494
  316  Item1  0.7717730     0 0.7950139
  317  Item1  0.4497985     1 0.5093386
  318  Item1  1.0937476     1 0.6585473
  319  Item1 -0.1941507     0 0.5825445
  320  Item1 -0.5161252     1 0.3120550
  321  Item1 -0.8380998     1 0.2639710
  322  Item1  0.4497985     1 0.5093386
  323  Item1  0.4497985     0 0.7326843
  324  Item1 -2.7699471     1 0.1339969
  325  Item1  1.0937476     1 0.6585473
  326  Item1  0.4497985     0 0.7326843
  327  Item1 -1.1600743     0 0.3567994
  328  Item1  0.7717730     0 0.7950139
  329  Item1  0.4497985     0 0.7326843
  330  Item1 -1.8040234     1 0.1726988
  331  Item1 -0.5161252     1 0.3120550
  332  Item1 -0.1941507     1 0.3698991
  333  Item1  0.1278239     1 0.4364813
  334  Item1 -0.8380998     1 0.2639710
  335  Item1  1.4157221     0 0.8870283
  336  Item1 -0.5161252     0 0.5025621
  337  Item1 -0.1941507     0 0.5825445
  338  Item1  0.1278239     1 0.4364813
  339  Item1  0.1278239     0 0.6607947
  340  Item1 -0.1941507     1 0.3698991
  341  Item1  0.1278239     0 0.6607947
  342  Item1  0.7717730     1 0.5847767
  343  Item1  0.7717730     0 0.7950139
  344  Item1  0.4497985     0 0.7326843
  345  Item1 -0.5161252     0 0.5025621
  346  Item1 -0.5161252     0 0.5025621
  347  Item1  0.1278239     1 0.4364813
  348  Item1 -0.8380998     0 0.4258949
  349  Item1  1.0937476     0 0.8463985
  350  Item1 -0.8380998     1 0.2639710
  351  Item1 -1.4820489     1 0.1954771
  352  Item1  1.0937476     0 0.8463985
  353  Item1 -0.1941507     0 0.5825445
  354  Item1  0.1278239     0 0.6607947
  355  Item1 -1.4820489     0 0.2979029
  356  Item1  1.0937476     0 0.8463985
  357  Item1  0.4497985     1 0.5093386
  358  Item1 -0.8380998     1 0.2639710
  359  Item1 -1.4820489     0 0.2979029
  360  Item1 -0.8380998     0 0.4258949
  361  Item1  1.7376967     1 0.7866563
  362  Item1 -0.8380998     1 0.2639710
  363  Item1  0.4497985     1 0.5093386
  364  Item1 -1.4820489     0 0.2979029
  365  Item1  1.4157221     0 0.8870283
  366  Item1  0.1278239     1 0.4364813
  367  Item1 -1.1600743     0 0.3567994
  368  Item1 -0.5161252     1 0.3120550
  369  Item1 -0.8380998     1 0.2639710
  370  Item1  0.7717730     1 0.5847767
  371  Item1 -1.1600743     0 0.3567994
  372  Item1  0.4497985     1 0.5093386
  373  Item1 -1.1600743     1 0.2254449
  374  Item1 -0.8380998     0 0.4258949
  375  Item1 -0.1941507     0 0.5825445
  376  Item1 -0.5161252     1 0.3120550
  377  Item1 -1.8040234     1 0.1726988
  378  Item1  0.4497985     0 0.7326843
  379  Item1 -0.5161252     0 0.5025621
  380  Item1  0.7717730     0 0.7950139
  381  Item1  1.0937476     0 0.8463985
  382  Item1  0.4497985     1 0.5093386
  383  Item1 -0.8380998     0 0.4258949
  384  Item1 -0.1941507     0 0.5825445
  385  Item1  0.1278239     0 0.6607947
  386  Item1  2.0596712     0 0.9412824
  387  Item1 -0.5161252     0 0.5025621
  388  Item1  2.7036203     0 0.9704721
  389  Item1 -1.1600743     0 0.3567994
  390  Item1 -2.1259980     1 0.1556872
  391  Item1 -0.5161252     1 0.3120550
  392  Item1 -0.1941507     1 0.3698991
  393  Item1  1.4157221     1 0.7267631
  394  Item1  0.4497985     1 0.5093386
  395  Item1 -0.5161252     0 0.5025621
  396  Item1 -0.1941507     1 0.3698991
  397  Item1 -0.8380998     0 0.4258949
  398  Item1  2.0596712     1 0.8368960
  399  Item1  2.0596712     1 0.8368960
  400  Item1  1.0937476     0 0.8463985
  401  Item1 -1.8040234     0 0.2500383
  402  Item1 -0.5161252     1 0.3120550
  403  Item1  0.1278239     1 0.4364813
  404  Item1  1.0937476     0 0.8463985
  405  Item1  1.7376967     0 0.9181070
  406  Item1 -0.1941507     1 0.3698991
  407  Item1  0.4497985     1 0.5093386
  408  Item1  0.7717730     1 0.5847767
  409  Item1  0.1278239     1 0.4364813
  410  Item1  2.0596712     1 0.8368960
  411  Item1  1.0937476     1 0.6585473
  412  Item1  0.1278239     1 0.4364813
  413  Item1  0.7717730     0 0.7950139
  414  Item1 -0.8380998     0 0.4258949
  415  Item1 -0.1941507     0 0.5825445
  416  Item1 -1.4820489     1 0.1954771
  417  Item1  0.4497985     1 0.5093386
  418  Item1 -1.4820489     0 0.2979029
  419  Item1 -0.8380998     0 0.4258949
  420  Item1 -2.1259980     1 0.1556872
  421  Item1 -0.5161252     1 0.3120550
  422  Item1  1.0937476     1 0.6585473
  423  Item1  0.1278239     1 0.4364813
  424  Item1  0.1278239     1 0.4364813
  425  Item1  0.4497985     1 0.5093386
  426  Item1 -1.1600743     0 0.3567994
  427  Item1  1.0937476     1 0.6585473
  428  Item1  1.0937476     1 0.6585473
  429  Item1  0.4497985     1 0.5093386
  430  Item1 -0.5161252     0 0.5025621
  431  Item1 -0.1941507     1 0.3698991
  432  Item1  0.1278239     1 0.4364813
  433  Item1 -0.5161252     0 0.5025621
  434  Item1  1.0937476     0 0.8463985
  435  Item1 -0.5161252     1 0.3120550
  436  Item1  1.7376967     1 0.7866563
  437  Item1  0.7717730     0 0.7950139
  438  Item1 -0.8380998     1 0.2639710
  439  Item1 -1.8040234     0 0.2500383
  440  Item1  0.4497985     1 0.5093386
  441  Item1  0.7717730     1 0.5847767
  442  Item1  0.4497985     1 0.5093386
  443  Item1  0.4497985     0 0.7326843
  444  Item1 -1.1600743     1 0.2254449
  445  Item1 -0.5161252     1 0.3120550
  446  Item1  0.7717730     0 0.7950139
  447  Item1  1.0937476     1 0.6585473
  448  Item1  1.0937476     1 0.6585473
  449  Item1 -1.4820489     1 0.1954771
  450  Item1 -0.5161252     1 0.3120550
  451  Item1  0.7717730     1 0.5847767
  452  Item1 -1.8040234     1 0.1726988
  453  Item1  2.0596712     1 0.8368960
  454  Item1  0.4497985     1 0.5093386
  455  Item1 -0.5161252     0 0.5025621
  456  Item1  1.4157221     1 0.7267631
  457  Item1  0.4497985     1 0.5093386
  458  Item1  0.7717730     1 0.5847767
  459  Item1 -0.5161252     1 0.3120550
  460  Item1  0.4497985     0 0.7326843
  461  Item1  0.4497985     1 0.5093386
  462  Item1  0.7717730     1 0.5847767
  463  Item1  1.4157221     1 0.7267631
  464  Item1  0.7717730     0 0.7950139
  465  Item1 -2.1259980     0 0.2126244
  466  Item1 -0.8380998     1 0.2639710
  467  Item1  0.4497985     1 0.5093386
  468  Item1  0.4497985     0 0.7326843
  469  Item1  0.7717730     1 0.5847767
  470  Item1  1.0937476     1 0.6585473
  471  Item1 -0.1941507     0 0.5825445
  472  Item1  0.1278239     0 0.6607947
  473  Item1 -0.5161252     1 0.3120550
  474  Item1 -0.5161252     0 0.5025621
  475  Item1  0.7717730     0 0.7950139
  476  Item1  0.4497985     0 0.7326843
  477  Item1 -1.1600743     0 0.3567994
  478  Item1  0.4497985     1 0.5093386
  479  Item1  0.4497985     1 0.5093386
  480  Item1  0.4497985     0 0.7326843
  481  Item1  1.0937476     0 0.8463985
  482  Item1  0.7717730     1 0.5847767
  483  Item1  0.7717730     0 0.7950139
  484  Item1  0.4497985     0 0.7326843
  485  Item1 -0.5161252     0 0.5025621
  486  Item1 -0.5161252     1 0.3120550
  487  Item1  0.7717730     0 0.7950139
  488  Item1  0.1278239     0 0.6607947
  489  Item1  0.1278239     1 0.4364813
  490  Item1  1.0937476     1 0.6585473
  491  Item1  0.4497985     0 0.7326843
  492  Item1 -1.1600743     1 0.2254449
  493  Item1 -1.1600743     1 0.2254449
  494  Item1 -0.5161252     1 0.3120550
  495  Item1 -0.5161252     0 0.5025621
  496  Item1 -1.4820489     1 0.1954771
  497  Item1 -1.4820489     0 0.2979029
  498  Item1  0.7717730     1 0.5847767
  499  Item1 -0.5161252     0 0.5025621
  500  Item1  1.7376967     1 0.7866563
  501  Item1  1.0937476     0 0.8463985
  502  Item1 -1.8040234     0 0.2500383
  503  Item1 -0.1941507     1 0.3698991
  504  Item1 -0.5161252     1 0.3120550
  505  Item1 -0.5161252     0 0.5025621
  506  Item1 -0.8380998     0 0.4258949
  507  Item1 -0.5161252     1 0.3120550
  508  Item1  0.1278239     1 0.4364813
  509  Item1 -0.5161252     1 0.3120550
  510  Item1 -0.5161252     1 0.3120550
  511  Item1 -0.5161252     1 0.3120550
  512  Item1 -2.4479725     0 0.1842596
  513  Item1 -2.1259980     0 0.2126244
  514  Item1  0.1278239     0 0.6607947
  515  Item1  1.4157221     1 0.7267631
  516  Item1 -1.4820489     0 0.2979029
  517  Item1 -0.1941507     1 0.3698991
  518  Item1 -0.8380998     0 0.4258949
  519  Item1 -0.8380998     1 0.2639710
  520  Item1  0.4497985     1 0.5093386
  521  Item1 -0.1941507     0 0.5825445
  522  Item1  0.4497985     1 0.5093386
  523  Item1  2.7036203     1 0.9091805
  524  Item1  1.7376967     1 0.7866563
  525  Item1  0.4497985     1 0.5093386
  526  Item1  1.0937476     1 0.6585473
  527  Item1  1.4157221     0 0.8870283
  528  Item1  0.7717730     1 0.5847767
  529  Item1 -0.8380998     1 0.2639710
  530  Item1  1.0937476     0 0.8463985
  531  Item1  1.0937476     0 0.8463985
  532  Item1  0.7717730     1 0.5847767
  533  Item1 -0.1941507     1 0.3698991
  534  Item1 -0.8380998     0 0.4258949
  535  Item1 -0.5161252     1 0.3120550
  536  Item1  0.1278239     0 0.6607947
  537  Item1  0.1278239     0 0.6607947
  538  Item1  0.4497985     0 0.7326843
  539  Item1 -0.5161252     0 0.5025621
  540  Item1  0.4497985     1 0.5093386
  541  Item1 -0.8380998     1 0.2639710
  542  Item1 -0.1941507     1 0.3698991
  543  Item1  1.0937476     1 0.6585473
  544  Item1 -1.1600743     0 0.3567994
  545  Item1 -0.5161252     0 0.5025621
  546  Item1  0.4497985     0 0.7326843
  547  Item1  0.4497985     1 0.5093386
  548  Item1  0.1278239     1 0.4364813
  549  Item1 -0.1941507     1 0.3698991
  550  Item1 -1.1600743     1 0.2254449
  551  Item1  0.1278239     1 0.4364813
  552  Item1 -1.1600743     1 0.2254449
  553  Item1  0.4497985     0 0.7326843
  554  Item1  0.1278239     1 0.4364813
  555  Item1 -1.1600743     0 0.3567994
  556  Item1  0.1278239     1 0.4364813
  557  Item1  1.0937476     1 0.6585473
  558  Item1 -0.8380998     1 0.2639710
  559  Item1  0.1278239     0 0.6607947
  560  Item1  0.4497985     1 0.5093386
  561  Item1  1.0937476     0 0.8463985
  562  Item1 -1.8040234     0 0.2500383
  563  Item1 -0.5161252     0 0.5025621
  564  Item1  0.7717730     0 0.7950139
  565  Item1  0.1278239     1 0.4364813
  566  Item1  0.7717730     1 0.5847767
  567  Item1 -0.8380998     1 0.2639710
  568  Item1  0.4497985     0 0.7326843
  569  Item1  1.7376967     0 0.9181070
  570  Item1 -0.8380998     0 0.4258949
  571  Item1 -0.5161252     0 0.5025621
  572  Item1  1.4157221     1 0.7267631
  573  Item1 -0.1941507     1 0.3698991
  574  Item1  0.1278239     1 0.4364813
  575  Item1 -0.5161252     0 0.5025621
  576  Item1  0.4497985     1 0.5093386
  577  Item1 -0.1941507     1 0.3698991
  578  Item1  0.4497985     0 0.7326843
  579  Item1 -1.8040234     1 0.1726988
  580  Item1 -0.1941507     1 0.3698991
  581  Item1 -0.8380998     0 0.4258949
  582  Item1 -1.4820489     1 0.1954771
  583  Item1 -0.5161252     0 0.5025621
  584  Item1 -0.5161252     0 0.5025621
  585  Item1  0.4497985     1 0.5093386
  586  Item1 -0.8380998     1 0.2639710
  587  Item1  0.1278239     1 0.4364813
  588  Item1 -2.1259980     1 0.1556872
  589  Item1  0.7717730     0 0.7950139
  590  Item1  0.1278239     1 0.4364813
  591  Item1  1.4157221     0 0.8870283
  592  Item1 -2.1259980     0 0.2126244
  593  Item1 -1.1600743     0 0.3567994
  594  Item1 -0.1941507     0 0.5825445
  595  Item1 -0.5161252     0 0.5025621
  596  Item1 -0.5161252     0 0.5025621
  597  Item1  0.1278239     1 0.4364813
  598  Item1 -1.1600743     1 0.2254449
  599  Item1  0.7717730     1 0.5847767
  600  Item1  0.1278239     0 0.6607947
  601  Item1 -0.8380998     1 0.2639710
  602  Item1 -1.8040234     0 0.2500383
  603  Item1 -0.1941507     1 0.3698991
  604  Item1 -0.8380998     1 0.2639710
  605  Item1 -0.5161252     1 0.3120550
  606  Item1  0.4497985     0 0.7326843
  607  Item1  1.0937476     0 0.8463985
  608  Item1  0.4497985     0 0.7326843
  609  Item1  1.7376967     1 0.7866563
  610  Item1  0.7717730     1 0.5847767
  611  Item1  0.1278239     0 0.6607947
  612  Item1  0.7717730     1 0.5847767
  613  Item1 -0.1941507     0 0.5825445
  614  Item1  1.7376967     1 0.7866563
  615  Item1  0.1278239     1 0.4364813
  616  Item1 -2.1259980     1 0.1556872
  617  Item1 -0.5161252     0 0.5025621
  618  Item1 -2.1259980     1 0.1556872
  619  Item1  0.4497985     0 0.7326843
  620  Item1 -1.4820489     0 0.2979029
  621  Item1  0.1278239     1 0.4364813
  622  Item1 -1.4820489     1 0.1954771
  623  Item1  0.1278239     1 0.4364813
  624  Item1  0.1278239     1 0.4364813
  625  Item1 -0.1941507     1 0.3698991
  626  Item1 -1.4820489     1 0.1954771
  627  Item1  0.7717730     0 0.7950139
  628  Item1 -0.8380998     0 0.4258949
  629  Item1  1.4157221     0 0.8870283
  630  Item1  0.4497985     0 0.7326843
  631  Item1 -1.1600743     1 0.2254449
  632  Item1  0.1278239     0 0.6607947
  633  Item1 -0.1941507     0 0.5825445
  634  Item1  0.7717730     0 0.7950139
  635  Item1  0.4497985     0 0.7326843
  636  Item1  1.0937476     0 0.8463985
  637  Item1  0.1278239     0 0.6607947
  638  Item1  0.4497985     0 0.7326843
  639  Item1 -0.1941507     0 0.5825445
  640  Item1  1.4157221     0 0.8870283
  641  Item1 -0.8380998     0 0.4258949
  642  Item1 -0.1941507     0 0.5825445
  643  Item1 -0.1941507     0 0.5825445
  644  Item1  0.7717730     1 0.5847767
  645  Item1 -1.1600743     1 0.2254449
  646  Item1 -1.1600743     0 0.3567994
  647  Item1 -0.5161252     1 0.3120550
  648  Item1 -1.1600743     0 0.3567994
  649  Item1 -0.8380998     0 0.4258949
  650  Item1 -0.5161252     0 0.5025621
  651  Item1  2.3816458     1 0.8774494
  652  Item1 -0.8380998     0 0.4258949
  653  Item1  0.4497985     0 0.7326843
  654  Item1  0.4497985     0 0.7326843
  655  Item1  0.1278239     0 0.6607947
  656  Item1  0.1278239     1 0.4364813
  657  Item1  0.7717730     0 0.7950139
  658  Item1  0.4497985     0 0.7326843
  659  Item1 -1.4820489     1 0.1954771
  660  Item1  0.4497985     0 0.7326843
  661  Item1 -0.5161252     1 0.3120550
  662  Item1  0.7717730     0 0.7950139
  663  Item1 -0.8380998     1 0.2639710
  664  Item1 -0.5161252     1 0.3120550
  665  Item1 -0.5161252     1 0.3120550
  666  Item1  2.7036203     0 0.9704721
  667  Item1 -0.1941507     0 0.5825445
  668  Item1  0.1278239     0 0.6607947
  669  Item1 -1.4820489     0 0.2979029
  670  Item1 -1.1600743     1 0.2254449
  671  Item1 -0.1941507     1 0.3698991
  672  Item1  0.7717730     1 0.5847767
  673  Item1  0.1278239     1 0.4364813
  674  Item1 -0.5161252     1 0.3120550
  675  Item1  0.4497985     0 0.7326843
  676  Item1  0.7717730     1 0.5847767
  677  Item1 -1.4820489     1 0.1954771
  678  Item1  0.1278239     1 0.4364813
  679  Item1 -0.5161252     1 0.3120550
  680  Item1  0.1278239     1 0.4364813
  681  Item1 -1.8040234     1 0.1726988
  682  Item1 -0.8380998     0 0.4258949
  683  Item1 -0.5161252     1 0.3120550
  684  Item1 -2.1259980     1 0.1556872
  685  Item1  0.1278239     0 0.6607947
  686  Item1  1.4157221     0 0.8870283
  687  Item1  0.1278239     1 0.4364813
  688  Item1  2.0596712     1 0.8368960
  689  Item1 -0.5161252     1 0.3120550
  690  Item1 -0.1941507     1 0.3698991
  691  Item1  1.0937476     0 0.8463985
  692  Item1  0.4497985     1 0.5093386
  693  Item1 -0.5161252     0 0.5025621
  694  Item1  0.4497985     1 0.5093386
  695  Item1 -1.8040234     0 0.2500383
  696  Item1  0.7717730     0 0.7950139
  697  Item1  0.7717730     0 0.7950139
  698  Item1 -0.5161252     0 0.5025621
  699  Item1 -0.8380998     1 0.2639710
  700  Item1  0.7717730     0 0.7950139
  701  Item1 -1.8040234     0 0.2500383
  702  Item1 -0.8380998     1 0.2639710
  703  Item1  1.7376967     0 0.9181070
  704  Item1 -0.8380998     1 0.2639710
  705  Item1 -0.1941507     1 0.3698991
  706  Item1 -1.4820489     0 0.2979029
  707  Item1  0.7717730     0 0.7950139
  708  Item1 -0.8380998     0 0.4258949
  709  Item1 -0.8380998     0 0.4258949
  710  Item1 -0.5161252     1 0.3120550
  711  Item1 -2.1259980     1 0.1556872
  712  Item1  1.4157221     0 0.8870283
  713  Item1  0.7717730     0 0.7950139
  714  Item1 -0.1941507     0 0.5825445
  715  Item1  0.4497985     1 0.5093386
  716  Item1  0.4497985     1 0.5093386
  717  Item1 -0.1941507     0 0.5825445
  718  Item1 -1.4820489     1 0.1954771
  719  Item1 -0.5161252     1 0.3120550
  720  Item1 -0.5161252     0 0.5025621
  721  Item1  0.4497985     1 0.5093386
  722  Item1 -0.8380998     0 0.4258949
  723  Item1 -0.5161252     0 0.5025621
  724  Item1 -0.1941507     0 0.5825445
  725  Item1  1.0937476     0 0.8463985
  726  Item1  1.4157221     1 0.7267631
  727  Item1 -1.4820489     1 0.1954771
  728  Item1 -0.1941507     1 0.3698991
  729  Item1  0.4497985     1 0.5093386
  730  Item1  0.1278239     0 0.6607947
  731  Item1 -0.1941507     1 0.3698991
  732  Item1  0.4497985     0 0.7326843
  733  Item1 -0.1941507     0 0.5825445
  734  Item1 -0.1941507     1 0.3698991
  735  Item1  1.0937476     1 0.6585473
  736  Item1 -0.1941507     1 0.3698991
  737  Item1  0.4497985     0 0.7326843
  738  Item1 -1.1600743     1 0.2254449
  739  Item1 -1.1600743     0 0.3567994
  740  Item1  2.0596712     1 0.8368960
  741  Item1  0.4497985     1 0.5093386
  742  Item1  0.7717730     1 0.5847767
  743  Item1  2.0596712     1 0.8368960
  744  Item1  0.4497985     0 0.7326843
  745  Item1 -0.5161252     1 0.3120550
  746  Item1  0.4497985     1 0.5093386
  747  Item1 -1.8040234     0 0.2500383
  748  Item1  1.4157221     0 0.8870283
  749  Item1  1.4157221     1 0.7267631
  750  Item1 -1.4820489     0 0.2979029
  751  Item1  1.4157221     1 0.7267631
  752  Item1  0.7717730     1 0.5847767
  753  Item1  0.7717730     1 0.5847767
  754  Item1  0.1278239     0 0.6607947
  755  Item1 -0.5161252     0 0.5025621
  756  Item1  0.4497985     0 0.7326843
  757  Item1 -0.8380998     0 0.4258949
  758  Item1 -0.1941507     1 0.3698991
  759  Item1  0.1278239     0 0.6607947
  760  Item1  2.0596712     0 0.9412824
  761  Item1 -1.1600743     1 0.2254449
  762  Item1 -0.1941507     1 0.3698991
  763  Item1  1.0937476     1 0.6585473
  764  Item1 -1.8040234     1 0.1726988
  765  Item1 -0.8380998     1 0.2639710
  766  Item1 -0.5161252     1 0.3120550
  767  Item1 -0.5161252     0 0.5025621
  768  Item1 -0.1941507     0 0.5825445
  769  Item1 -0.5161252     0 0.5025621
  770  Item1 -1.1600743     0 0.3567994
  771  Item1 -1.1600743     0 0.3567994
  772  Item1  1.4157221     0 0.8870283
  773  Item1  0.4497985     0 0.7326843
  774  Item1  0.4497985     1 0.5093386
  775  Item1 -0.5161252     1 0.3120550
  776  Item1 -1.1600743     0 0.3567994
  777  Item1  1.0937476     1 0.6585473
  778  Item1  0.4497985     0 0.7326843
  779  Item1 -0.1941507     1 0.3698991
  780  Item1  1.0937476     0 0.8463985
  781  Item1  0.1278239     0 0.6607947
  782  Item1 -1.1600743     0 0.3567994
  783  Item1  0.7717730     0 0.7950139
  784  Item1 -0.1941507     1 0.3698991
  785  Item1 -0.8380998     0 0.4258949
  786  Item1 -0.5161252     1 0.3120550
  787  Item1 -0.8380998     1 0.2639710
  788  Item1 -0.5161252     0 0.5025621
  789  Item1 -0.5161252     0 0.5025621
  790  Item1  0.7717730     1 0.5847767
  791  Item1 -1.4820489     0 0.2979029
  792  Item1  1.0937476     0 0.8463985
  793  Item1 -0.5161252     0 0.5025621
  794  Item1  0.4497985     0 0.7326843
  795  Item1 -1.4820489     1 0.1954771
  796  Item1 -0.5161252     0 0.5025621
  797  Item1  0.1278239     1 0.4364813
  798  Item1 -0.1941507     0 0.5825445
  799  Item1 -1.1600743     0 0.3567994
  800  Item1 -0.8380998     1 0.2639710
  801  Item1 -0.1941507     0 0.5825445
  802  Item1 -0.1941507     0 0.5825445
  803  Item1  0.7717730     0 0.7950139
  804  Item1  2.0596712     1 0.8368960
  805  Item1  1.4157221     1 0.7267631
  806  Item1  0.4497985     0 0.7326843
  807  Item1 -0.5161252     1 0.3120550
  808  Item1 -0.8380998     0 0.4258949
  809  Item1 -0.8380998     1 0.2639710
  810  Item1  2.0596712     1 0.8368960
  811  Item1  1.0937476     0 0.8463985
  812  Item1  0.4497985     1 0.5093386
  813  Item1  1.4157221     1 0.7267631
  814  Item1  0.7717730     0 0.7950139
  815  Item1 -0.8380998     1 0.2639710
  816  Item1 -0.8380998     0 0.4258949
  817  Item1 -1.1600743     1 0.2254449
  818  Item1  0.4497985     1 0.5093386
  819  Item1  0.1278239     1 0.4364813
  820  Item1 -1.4820489     1 0.1954771
  821  Item1  0.7717730     0 0.7950139
  822  Item1  0.4497985     0 0.7326843
  823  Item1  0.7717730     0 0.7950139
  824  Item1  1.4157221     0 0.8870283
  825  Item1  1.4157221     0 0.8870283
  826  Item1 -0.1941507     1 0.3698991
  827  Item1 -0.8380998     0 0.4258949
  828  Item1 -1.4820489     1 0.1954771
  829  Item1 -0.5161252     0 0.5025621
  830  Item1  0.1278239     1 0.4364813
  831  Item1 -1.1600743     1 0.2254449
  832  Item1 -1.8040234     0 0.2500383
  833  Item1  0.4497985     1 0.5093386
  834  Item1  0.4497985     1 0.5093386
  835  Item1 -0.5161252     1 0.3120550
  836  Item1 -1.1600743     1 0.2254449
  837  Item1  0.1278239     1 0.4364813
  838  Item1 -1.1600743     0 0.3567994
  839  Item1  1.0937476     0 0.8463985
  840  Item1  0.7717730     1 0.5847767
  841  Item1  0.1278239     0 0.6607947
  842  Item1 -0.8380998     0 0.4258949
  843  Item1  0.4497985     0 0.7326843
  844  Item1 -1.4820489     0 0.2979029
  845  Item1  0.7717730     1 0.5847767
  846  Item1 -0.1941507     1 0.3698991
  847  Item1 -0.8380998     1 0.2639710
  848  Item1 -0.8380998     1 0.2639710
  849  Item1  0.4497985     0 0.7326843
  850  Item1 -1.8040234     1 0.1726988
  851  Item1 -0.5161252     0 0.5025621
  852  Item1 -0.8380998     0 0.4258949
  853  Item1 -0.1941507     0 0.5825445
  854  Item1 -1.8040234     0 0.2500383
  855  Item1 -0.1941507     0 0.5825445
  856  Item1 -0.1941507     1 0.3698991
  857  Item1  0.4497985     1 0.5093386
  858  Item1 -0.1941507     0 0.5825445
  859  Item1  0.4497985     1 0.5093386
  860  Item1  0.4497985     0 0.7326843
  861  Item1  0.4497985     1 0.5093386
  862  Item1  0.4497985     0 0.7326843
  863  Item1  1.0937476     1 0.6585473
  864  Item1  1.7376967     1 0.7866563
  865  Item1  0.1278239     1 0.4364813
  866  Item1  0.7717730     1 0.5847767
  867  Item1  2.0596712     1 0.8368960
  868  Item1  0.4497985     1 0.5093386
  869  Item1 -0.1941507     0 0.5825445
  870  Item1 -0.8380998     1 0.2639710
  871  Item1 -0.1941507     0 0.5825445
  872  Item1  1.4157221     0 0.8870283
  873  Item1  0.1278239     0 0.6607947
  874  Item1 -0.1941507     1 0.3698991
  875  Item1  1.7376967     0 0.9181070
  876  Item1  0.4497985     0 0.7326843
  877  Item1 -0.1941507     0 0.5825445
  878  Item1 -1.1600743     0 0.3567994
  879  Item1  0.1278239     1 0.4364813
  880  Item1  1.0937476     1 0.6585473
  881  Item1 -0.1941507     1 0.3698991
  882  Item1 -1.4820489     1 0.1954771
  883  Item1 -0.5161252     0 0.5025621
  884  Item1  1.4157221     0 0.8870283
  885  Item1 -0.1941507     0 0.5825445
  886  Item1  0.1278239     1 0.4364813
  887  Item1  0.1278239     0 0.6607947
  888  Item1 -0.1941507     0 0.5825445
  889  Item1 -0.1941507     1 0.3698991
  890  Item1  0.7717730     0 0.7950139
  891  Item1 -0.8380998     0 0.4258949
  892  Item1 -1.4820489     1 0.1954771
  893  Item1 -0.8380998     0 0.4258949
  894  Item1  1.0937476     1 0.6585473
  895  Item1  0.7717730     1 0.5847767
  896  Item1  0.1278239     1 0.4364813
  897  Item1 -0.5161252     1 0.3120550
  898  Item1  2.0596712     1 0.8368960
  899  Item1  1.0937476     1 0.6585473
  900  Item1  0.1278239     0 0.6607947
  901  Item1 -0.1941507     0 0.5825445
  902  Item1 -0.5161252     1 0.3120550
  903  Item1  1.7376967     1 0.7866563
  904  Item1 -0.5161252     1 0.3120550
  905  Item1  0.4497985     0 0.7326843
  906  Item1 -0.8380998     1 0.2639710
  907  Item1  0.4497985     0 0.7326843
  908  Item1  0.7717730     1 0.5847767
  909  Item1 -0.5161252     1 0.3120550
  910  Item1  0.7717730     0 0.7950139
  911  Item1  0.1278239     0 0.6607947
  912  Item1 -0.1941507     1 0.3698991
  913  Item1  0.7717730     1 0.5847767
  914  Item1 -0.1941507     0 0.5825445
  915  Item1 -0.1941507     1 0.3698991
  916  Item1  0.7717730     0 0.7950139
  917  Item1 -0.1941507     1 0.3698991
  918  Item1  0.1278239     1 0.4364813
  919  Item1  0.7717730     1 0.5847767
  920  Item1  1.4157221     0 0.8870283
  921  Item1  0.7717730     1 0.5847767
  922  Item1 -1.1600743     0 0.3567994
  923  Item1 -0.8380998     0 0.4258949
  924  Item1 -0.5161252     0 0.5025621
  925  Item1  0.1278239     0 0.6607947
  926  Item1 -1.4820489     1 0.1954771
  927  Item1 -0.1941507     0 0.5825445
  928  Item1  0.7717730     1 0.5847767
  929  Item1 -0.5161252     0 0.5025621
  930  Item1  0.7717730     1 0.5847767
  931  Item1  0.4497985     0 0.7326843
  932  Item1  1.7376967     1 0.7866563
  933  Item1 -0.1941507     0 0.5825445
  934  Item1 -0.8380998     0 0.4258949
  935  Item1 -0.1941507     0 0.5825445
  936  Item1 -0.1941507     1 0.3698991
  937  Item1  0.7717730     1 0.5847767
  938  Item1  1.4157221     1 0.7267631
  939  Item1 -1.4820489     1 0.1954771
  940  Item1  0.4497985     0 0.7326843
  941  Item1  0.4497985     1 0.5093386
  942  Item1 -0.8380998     0 0.4258949
  943  Item1 -0.1941507     1 0.3698991
  944  Item1  1.4157221     0 0.8870283
  945  Item1 -0.5161252     1 0.3120550
  946  Item1  0.7717730     1 0.5847767
  947  Item1 -1.4820489     1 0.1954771
  948  Item1 -1.8040234     0 0.2500383
  949  Item1 -0.1941507     0 0.5825445
  950  Item1 -0.5161252     0 0.5025621
  951  Item1  0.7717730     1 0.5847767
  952  Item1  0.4497985     1 0.5093386
  953  Item1 -0.1941507     1 0.3698991
  954  Item1  1.4157221     0 0.8870283
  955  Item1  0.1278239     0 0.6607947
  956  Item1 -1.4820489     1 0.1954771
  957  Item1 -0.5161252     0 0.5025621
  958  Item1  0.4497985     1 0.5093386
  959  Item1 -1.1600743     1 0.2254449
  960  Item1  1.0937476     0 0.8463985
  961  Item1  1.7376967     1 0.7866563
  962  Item1 -0.8380998     1 0.2639710
  963  Item1 -1.4820489     1 0.1954771
  964  Item1  0.1278239     0 0.6607947
  965  Item1 -1.1600743     1 0.2254449
  966  Item1 -1.1600743     1 0.2254449
  967  Item1  0.1278239     1 0.4364813
  968  Item1  1.0937476     1 0.6585473
  969  Item1  0.1278239     1 0.4364813
  970  Item1 -0.8380998     1 0.2639710
  971  Item1 -0.1941507     1 0.3698991
  972  Item1 -1.8040234     1 0.1726988
  973  Item1 -0.1941507     0 0.5825445
  974  Item1  1.4157221     1 0.7267631
  975  Item1 -0.1941507     1 0.3698991
  976  Item1  0.1278239     0 0.6607947
  977  Item1  1.4157221     1 0.7267631
  978  Item1  1.4157221     1 0.7267631
  979  Item1  0.1278239     0 0.6607947
  980  Item1  0.4497985     0 0.7326843
  981  Item1  1.0937476     1 0.6585473
  982  Item1  1.7376967     0 0.9181070
  983  Item1 -0.1941507     0 0.5825445
  984  Item1  0.7717730     0 0.7950139
  985  Item1 -1.1600743     1 0.2254449
  986  Item1  0.1278239     0 0.6607947
  987  Item1 -0.1941507     0 0.5825445
  988  Item1 -0.8380998     1 0.2639710
  989  Item1  0.4497985     1 0.5093386
  990  Item1  0.7717730     1 0.5847767
  991  Item1 -2.7699471     1 0.1339969
  992  Item1  0.7717730     1 0.5847767
  993  Item1  0.4497985     1 0.5093386
  994  Item1 -0.1941507     1 0.3698991
  995  Item1  0.4497985     0 0.7326843
  996  Item1 -1.1600743     0 0.3567994
  997  Item1  1.7376967     0 0.9181070
  998  Item1 -0.1941507     1 0.3698991
  999  Item1  1.4157221     0 0.8870283
  1000 Item1  0.1278239     0 0.6607947
  1001 Item1 -0.1941507     0 0.5825445
  1002 Item1 -1.1600743     0 0.3567994
  1003 Item1 -1.1600743     1 0.2254449
  1004 Item1 -0.8380998     0 0.4258949
  1005 Item1  0.4497985     0 0.7326843
  1006 Item1 -1.4820489     0 0.2979029
  1007 Item1  2.3816458     0 0.9582384
  1008 Item1  0.1278239     0 0.6607947
  1009 Item1  0.7717730     1 0.5847767
  1010 Item1 -0.5161252     0 0.5025621
  1011 Item1 -1.1600743     1 0.2254449
  1012 Item1  0.1278239     0 0.6607947
  1013 Item1 -2.7699471     0 0.1632496
  1014 Item1  0.1278239     1 0.4364813
  1015 Item1 -0.1941507     0 0.5825445
  1016 Item1 -0.8380998     1 0.2639710
  1017 Item1 -1.8040234     1 0.1726988
  1018 Item1  0.4497985     0 0.7326843
  1019 Item1 -1.1600743     0 0.3567994
  1020 Item1 -0.1941507     0 0.5825445
  1021 Item1  0.4497985     0 0.7326843
  1022 Item1 -0.8380998     0 0.4258949
  1023 Item1  1.7376967     0 0.9181070
  1024 Item1 -0.8380998     0 0.4258949
  1025 Item1  1.0937476     1 0.6585473
  1026 Item1  0.1278239     1 0.4364813
  1027 Item1  0.1278239     0 0.6607947
  1028 Item1 -1.1600743     1 0.2254449
  1029 Item1 -0.5161252     1 0.3120550
  1030 Item1  0.1278239     0 0.6607947
  1031 Item1 -0.8380998     0 0.4258949
  1032 Item1  0.7717730     1 0.5847767
  1033 Item1  0.4497985     1 0.5093386
  1034 Item1 -1.4820489     1 0.1954771
  1035 Item1  1.4157221     1 0.7267631
  1036 Item1 -0.1941507     0 0.5825445
  1037 Item1 -2.1259980     1 0.1556872
  1038 Item1 -0.8380998     0 0.4258949
  1039 Item1  0.4497985     0 0.7326843
  1040 Item1 -2.4479725     0 0.1842596
  1041 Item1  0.1278239     0 0.6607947
  1042 Item1 -0.1941507     1 0.3698991
  1043 Item1 -0.8380998     0 0.4258949
  1044 Item1  1.0937476     1 0.6585473
  1045 Item1  1.0937476     1 0.6585473
  1046 Item1  0.1278239     0 0.6607947
  1047 Item1 -0.5161252     1 0.3120550
  1048 Item1 -1.1600743     0 0.3567994
  1049 Item1 -0.1941507     1 0.3698991
  1050 Item1  0.7717730     0 0.7950139
  1051 Item1 -0.8380998     1 0.2639710
  1052 Item1 -0.5161252     1 0.3120550
  1053 Item1  0.1278239     0 0.6607947
  1054 Item1 -0.8380998     0 0.4258949
  1055 Item1  0.4497985     1 0.5093386
  1056 Item1  0.1278239     1 0.4364813
  1057 Item1 -1.8040234     0 0.2500383
  1058 Item1  0.1278239     1 0.4364813
  1059 Item1 -0.1941507     1 0.3698991
  1060 Item1 -0.1941507     1 0.3698991
  1061 Item1 -1.4820489     0 0.2979029
  1062 Item1 -1.1600743     0 0.3567994
  1063 Item1  0.7717730     1 0.5847767
  1064 Item1 -0.5161252     0 0.5025621
  1065 Item1  0.4497985     0 0.7326843
  1066 Item1  0.4497985     0 0.7326843
  1067 Item1  0.7717730     0 0.7950139
  1068 Item1  1.0937476     0 0.8463985
  1069 Item1 -1.1600743     0 0.3567994
  1070 Item1  0.1278239     0 0.6607947
  1071 Item1  0.1278239     1 0.4364813
  1072 Item1 -0.8380998     0 0.4258949
  1073 Item1  0.1278239     1 0.4364813
  1074 Item1 -2.1259980     1 0.1556872
  1075 Item1  0.7717730     0 0.7950139
  1076 Item1  0.7717730     0 0.7950139
  1077 Item1 -2.4479725     1 0.1431489
  1078 Item1 -1.1600743     1 0.2254449
  1079 Item1 -0.5161252     0 0.5025621
  1080 Item1 -0.8380998     1 0.2639710
  1081 Item1 -0.8380998     0 0.4258949
  1082 Item1 -1.1600743     1 0.2254449
  1083 Item1  2.0596712     0 0.9412824
  1084 Item1 -1.8040234     1 0.1726988
  1085 Item1 -0.5161252     0 0.5025621
  1086 Item1 -0.8380998     1 0.2639710
  1087 Item1 -1.8040234     0 0.2500383
  1088 Item1 -0.5161252     0 0.5025621
  1089 Item1 -2.1259980     0 0.2126244
  1090 Item1 -0.8380998     0 0.4258949
  1091 Item1  0.7717730     1 0.5847767
  1092 Item1  0.7717730     0 0.7950139
  1093 Item1  1.4157221     0 0.8870283
  1094 Item1  0.7717730     0 0.7950139
  1095 Item1  0.1278239     0 0.6607947
  1096 Item1  0.4497985     1 0.5093386
  1097 Item1  0.7717730     1 0.5847767
  1098 Item1 -1.4820489     1 0.1954771
  1099 Item1 -0.5161252     1 0.3120550
  1100 Item1 -0.5161252     1 0.3120550
  1101 Item1  2.0596712     0 0.9412824
  1102 Item1 -1.8040234     0 0.2500383
  1103 Item1  0.4497985     0 0.7326843
  1104 Item1 -0.8380998     1 0.2639710
  1105 Item1  1.4157221     1 0.7267631
  1106 Item1  0.7717730     1 0.5847767
  1107 Item1 -0.5161252     1 0.3120550
  1108 Item1 -0.8380998     0 0.4258949
  1109 Item1  0.4497985     1 0.5093386
  1110 Item1 -0.8380998     0 0.4258949
  1111 Item1  0.7717730     1 0.5847767
  1112 Item1  0.1278239     1 0.4364813
  1113 Item1 -0.1941507     1 0.3698991
  1114 Item1 -1.8040234     0 0.2500383
  1115 Item1  0.4497985     0 0.7326843
  1116 Item1  1.0937476     1 0.6585473
  1117 Item1 -0.5161252     0 0.5025621
  1118 Item1  0.1278239     0 0.6607947
  1119 Item1  0.4497985     1 0.5093386
  1120 Item1  0.7717730     0 0.7950139
  1121 Item1  1.4157221     0 0.8870283
  1122 Item1  0.4497985     0 0.7326843
  1123 Item1 -0.5161252     0 0.5025621
  1124 Item1  0.1278239     0 0.6607947
  1125 Item1 -0.1941507     0 0.5825445
  1126 Item1 -0.1941507     0 0.5825445
  1127 Item1 -1.1600743     0 0.3567994
  1128 Item1 -0.1941507     1 0.3698991
  1129 Item1 -0.8380998     0 0.4258949
  1130 Item1  0.1278239     0 0.6607947
  1131 Item1 -1.8040234     1 0.1726988
  1132 Item1 -0.1941507     1 0.3698991
  1133 Item1  2.0596712     1 0.8368960
  1134 Item1 -0.8380998     0 0.4258949
  1135 Item1  1.4157221     0 0.8870283
  1136 Item1 -0.8380998     0 0.4258949
  1137 Item1 -1.4820489     0 0.2979029
  1138 Item1 -0.5161252     0 0.5025621
  1139 Item1 -1.8040234     0 0.2500383
  1140 Item1 -0.1941507     0 0.5825445
  1141 Item1 -0.1941507     1 0.3698991
  1142 Item1 -1.8040234     1 0.1726988
  1143 Item1 -0.1941507     1 0.3698991
  1144 Item1 -0.1941507     1 0.3698991
  1145 Item1  0.7717730     1 0.5847767
  1146 Item1  0.7717730     1 0.5847767
  1147 Item1  0.7717730     0 0.7950139
  1148 Item1  0.4497985     1 0.5093386
  1149 Item1 -0.1941507     1 0.3698991
  1150 Item1  0.1278239     1 0.4364813
  1151 Item1  0.1278239     0 0.6607947
  1152 Item1 -1.8040234     0 0.2500383
  1153 Item1 -1.8040234     0 0.2500383
  1154 Item1 -1.1600743     1 0.2254449
  1155 Item1  0.7717730     0 0.7950139
  1156 Item1  1.7376967     0 0.9181070
  1157 Item1  1.4157221     0 0.8870283
  1158 Item1  0.1278239     1 0.4364813
  1159 Item1  1.7376967     0 0.9181070
  1160 Item1  0.4497985     0 0.7326843
  1161 Item1 -2.1259980     0 0.2126244
  1162 Item1 -1.1600743     1 0.2254449
  1163 Item1 -0.5161252     0 0.5025621
  1164 Item1  1.4157221     1 0.7267631
  1165 Item1  0.4497985     0 0.7326843
  1166 Item1 -2.1259980     0 0.2126244
  1167 Item1 -0.5161252     0 0.5025621
  1168 Item1 -1.1600743     1 0.2254449
  1169 Item1 -0.5161252     0 0.5025621
  1170 Item1  0.4497985     0 0.7326843
  1171 Item1 -0.8380998     0 0.4258949
  1172 Item1 -0.8380998     0 0.4258949
  1173 Item1 -1.4820489     0 0.2979029
  1174 Item1  2.7036203     1 0.9091805
  1175 Item1  2.0596712     0 0.9412824
  1176 Item1  1.4157221     1 0.7267631
  1177 Item1  0.7717730     0 0.7950139
  1178 Item1  0.4497985     1 0.5093386
  1179 Item1 -2.1259980     1 0.1556872
  1180 Item1 -0.1941507     0 0.5825445
  1181 Item1  0.7717730     0 0.7950139
  1182 Item1 -0.5161252     0 0.5025621
  1183 Item1 -0.5161252     0 0.5025621
  1184 Item1  0.1278239     0 0.6607947
  1185 Item1  0.1278239     1 0.4364813
  1186 Item1 -0.1941507     0 0.5825445
  1187 Item1 -0.5161252     1 0.3120550
  1188 Item1  0.7717730     1 0.5847767
  1189 Item1  0.4497985     1 0.5093386
  1190 Item1 -0.8380998     0 0.4258949
  1191 Item1  0.1278239     0 0.6607947
  1192 Item1  2.3816458     1 0.8774494
  1193 Item1  1.7376967     1 0.7866563
  1194 Item1  0.4497985     1 0.5093386
  1195 Item1  0.7717730     0 0.7950139
  1196 Item1 -0.5161252     1 0.3120550
  1197 Item1  0.7717730     0 0.7950139
  1198 Item1  0.1278239     1 0.4364813
  1199 Item1 -1.8040234     0 0.2500383
  1200 Item1  1.7376967     1 0.7866563
  1201 Item1  1.0937476     1 0.6585473
  1202 Item1  0.7717730     1 0.5847767
  1203 Item1 -1.1600743     0 0.3567994
  1204 Item1  0.1278239     0 0.6607947
  1205 Item1 -0.8380998     0 0.4258949
  1206 Item1  1.4157221     0 0.8870283
  1207 Item1  1.7376967     0 0.9181070
  1208 Item1 -0.8380998     1 0.2639710
  1209 Item1  1.7376967     0 0.9181070
  1210 Item1 -0.5161252     1 0.3120550
  1211 Item1 -0.5161252     1 0.3120550
  1212 Item1  0.1278239     0 0.6607947
  1213 Item1 -0.1941507     1 0.3698991
  1214 Item1  2.0596712     0 0.9412824
  1215 Item1 -0.1941507     1 0.3698991
  1216 Item1  0.1278239     1 0.4364813
  1217 Item1  1.0937476     1 0.6585473
  1218 Item1  1.0937476     1 0.6585473
  1219 Item1  2.0596712     1 0.8368960
  1220 Item1 -1.8040234     1 0.1726988
  1221 Item1  0.4497985     1 0.5093386
  1222 Item1  0.7717730     0 0.7950139
  1223 Item1  0.1278239     1 0.4364813
  1224 Item1 -0.1941507     0 0.5825445
  1225 Item1 -0.5161252     1 0.3120550
  1226 Item1  0.7717730     0 0.7950139
  1227 Item1 -0.1941507     1 0.3698991
  1228 Item1  1.4157221     1 0.7267631
  1229 Item1  0.4497985     0 0.7326843
  1230 Item1  0.1278239     1 0.4364813
  1231 Item1  0.4497985     1 0.5093386
  1232 Item1  0.7717730     0 0.7950139
  1233 Item1  0.4497985     1 0.5093386
  1234 Item1  0.4497985     0 0.7326843
  1235 Item1  1.7376967     0 0.9181070
  1236 Item1 -1.1600743     0 0.3567994
  1237 Item1  0.7717730     0 0.7950139
  1238 Item1 -0.8380998     0 0.4258949
  1239 Item1  0.4497985     0 0.7326843
  1240 Item1 -0.5161252     1 0.3120550
  1241 Item1 -0.1941507     0 0.5825445
  1242 Item1  0.1278239     0 0.6607947
  1243 Item1 -0.1941507     0 0.5825445
  1244 Item1  0.4497985     0 0.7326843
  1245 Item1  1.4157221     1 0.7267631
  1246 Item1 -0.5161252     0 0.5025621
  1247 Item1  1.4157221     1 0.7267631
  1248 Item1 -0.1941507     0 0.5825445
  1249 Item1  2.0596712     0 0.9412824
  1250 Item1 -0.5161252     1 0.3120550
  1251 Item1 -0.5161252     1 0.3120550
  1252 Item1 -0.5161252     1 0.3120550
  1253 Item1  0.1278239     1 0.4364813
  1254 Item1  0.4497985     1 0.5093386
  1255 Item1 -0.1941507     1 0.3698991
  1256 Item1 -1.1600743     1 0.2254449
  1257 Item1  0.4497985     1 0.5093386
  1258 Item1  0.4497985     0 0.7326843
  1259 Item1 -0.5161252     0 0.5025621
  1260 Item1 -0.1941507     0 0.5825445
  1261 Item1  0.4497985     1 0.5093386
  1262 Item1 -1.4820489     1 0.1954771
  1263 Item1 -0.5161252     1 0.3120550
  1264 Item1  0.1278239     0 0.6607947
  1265 Item1 -0.1941507     0 0.5825445
  1266 Item1 -1.8040234     1 0.1726988
  1267 Item1 -0.5161252     0 0.5025621
  1268 Item1  0.1278239     0 0.6607947
  1269 Item1 -0.5161252     0 0.5025621
  1270 Item1 -1.4820489     0 0.2979029
  1271 Item1 -1.4820489     0 0.2979029
  1272 Item1  0.4497985     1 0.5093386
  1273 Item1  1.4157221     1 0.7267631
  1274 Item1 -1.1600743     0 0.3567994
  1275 Item1  1.7376967     1 0.7866563
  1276 Item1  0.4497985     0 0.7326843
  1277 Item1 -0.5161252     1 0.3120550
  1278 Item1  1.0937476     0 0.8463985
  1279 Item1  0.1278239     1 0.4364813
  1280 Item1  1.0937476     1 0.6585473
  1281 Item1 -0.5161252     1 0.3120550
  1282 Item1  1.7376967     0 0.9181070
  1283 Item1 -1.8040234     1 0.1726988
  1284 Item1  0.7717730     1 0.5847767
  1285 Item1  0.7717730     1 0.5847767
  1286 Item1 -1.8040234     0 0.2500383
  1287 Item1 -0.5161252     0 0.5025621
  1288 Item1  2.0596712     0 0.9412824
  1289 Item1 -1.8040234     1 0.1726988
  1290 Item1  0.4497985     1 0.5093386
  1291 Item1  1.0937476     0 0.8463985
  1292 Item1 -1.8040234     1 0.1726988
  1293 Item1  0.7717730     1 0.5847767
  1294 Item1  1.0937476     1 0.6585473
  1295 Item1  0.1278239     0 0.6607947
  1296 Item1  0.1278239     1 0.4364813
  1297 Item1  1.0937476     1 0.6585473
  1298 Item1  1.0937476     0 0.8463985
  1299 Item1 -0.1941507     1 0.3698991
  1300 Item1  0.7717730     1 0.5847767
  1301 Item1  0.7717730     0 0.7950139
  1302 Item1 -1.8040234     1 0.1726988
  1303 Item1  0.7717730     0 0.7950139
  1304 Item1 -0.5161252     1 0.3120550
  1305 Item1  1.7376967     1 0.7866563
  1306 Item1  0.1278239     0 0.6607947
  1307 Item1 -0.8380998     1 0.2639710
  1308 Item1 -0.1941507     0 0.5825445
  1309 Item1 -0.5161252     0 0.5025621
  1310 Item1  1.0937476     0 0.8463985
  1311 Item1  1.0937476     0 0.8463985
  1312 Item1 -0.8380998     0 0.4258949
  1313 Item1 -0.1941507     1 0.3698991
  1314 Item1 -1.1600743     1 0.2254449
  1315 Item1  0.4497985     1 0.5093386
  1316 Item1  0.4497985     0 0.7326843
  1317 Item1  0.7717730     0 0.7950139
  1318 Item1  1.4157221     0 0.8870283
  1319 Item1  1.4157221     1 0.7267631
  1320 Item1  0.1278239     0 0.6607947
  1321 Item1  0.7717730     1 0.5847767
  1322 Item1 -0.1941507     1 0.3698991
  1323 Item1 -0.5161252     0 0.5025621
  1324 Item1  0.7717730     0 0.7950139
  1325 Item1  1.0937476     1 0.6585473
  1326 Item1 -0.8380998     1 0.2639710
  1327 Item1 -0.5161252     1 0.3120550
  1328 Item1  0.4497985     1 0.5093386
  1329 Item1  1.0937476     0 0.8463985
  1330 Item1 -1.4820489     0 0.2979029
  1331 Item1  1.0937476     1 0.6585473
  1332 Item1 -0.5161252     0 0.5025621
  1333 Item1  0.4497985     0 0.7326843
  1334 Item1 -0.1941507     1 0.3698991
  1335 Item1 -0.5161252     0 0.5025621
  1336 Item1  0.7717730     0 0.7950139
  1337 Item1 -0.8380998     1 0.2639710
  1338 Item1 -0.1941507     0 0.5825445
  1339 Item1  0.7717730     0 0.7950139
  1340 Item1 -0.8380998     1 0.2639710
  1341 Item1 -0.5161252     1 0.3120550
  1342 Item1  1.7376967     0 0.9181070
  1343 Item1 -0.1941507     0 0.5825445
  1344 Item1 -1.4820489     0 0.2979029
  1345 Item1 -0.1941507     0 0.5825445
  1346 Item1  0.1278239     1 0.4364813
  1347 Item1 -0.5161252     0 0.5025621
  1348 Item1 -1.1600743     1 0.2254449
  1349 Item1 -0.5161252     1 0.3120550
  1350 Item1  0.4497985     1 0.5093386
  1351 Item1 -0.1941507     1 0.3698991
  1352 Item1 -0.5161252     0 0.5025621
  1353 Item1  1.4157221     0 0.8870283
  1354 Item1  1.7376967     1 0.7866563
  1355 Item1 -1.1600743     0 0.3567994
  1356 Item1  0.7717730     1 0.5847767
  1357 Item1  0.4497985     1 0.5093386
  1358 Item1 -0.1941507     0 0.5825445
  1359 Item1  1.7376967     1 0.7866563
  1360 Item1  1.0937476     0 0.8463985
  1361 Item1 -0.8380998     1 0.2639710
  1362 Item1  0.1278239     0 0.6607947
  1363 Item1 -0.1941507     0 0.5825445
  1364 Item1 -1.1600743     1 0.2254449
  1365 Item1  0.4497985     1 0.5093386
  1366 Item1  0.1278239     0 0.6607947
  1367 Item1  1.7376967     0 0.9181070
  1368 Item1 -0.1941507     1 0.3698991
  1369 Item1  0.1278239     0 0.6607947
  1370 Item1  1.7376967     0 0.9181070
  1371 Item1  1.0937476     1 0.6585473
  1372 Item1  0.1278239     0 0.6607947
  1373 Item1  2.7036203     1 0.9091805
  1374 Item1 -0.5161252     1 0.3120550
  1375 Item1  0.1278239     1 0.4364813
  1376 Item1  0.4497985     1 0.5093386
  1377 Item1  0.7717730     0 0.7950139
  1378 Item1  0.1278239     1 0.4364813
  1379 Item1 -0.1941507     0 0.5825445
  1380 Item1 -0.8380998     0 0.4258949
  1381 Item1 -1.1600743     1 0.2254449
  1382 Item1 -0.5161252     0 0.5025621
  1383 Item1 -0.1941507     0 0.5825445
  1384 Item1 -1.4820489     1 0.1954771
  1385 Item1  0.7717730     0 0.7950139
  1386 Item1 -0.5161252     1 0.3120550
  1387 Item1 -0.1941507     1 0.3698991
  1388 Item1 -1.4820489     1 0.1954771
  1389 Item1 -2.1259980     1 0.1556872
  1390 Item1  0.7717730     0 0.7950139
  1391 Item1  0.4497985     1 0.5093386
  1392 Item1  0.4497985     1 0.5093386
  1393 Item1  0.4497985     0 0.7326843
  1394 Item1  1.7376967     1 0.7866563
  1395 Item1  1.7376967     1 0.7866563
  1396 Item1  0.4497985     0 0.7326843
  1397 Item1 -0.8380998     0 0.4258949
  1398 Item1  0.7717730     1 0.5847767
  1399 Item1  0.1278239     1 0.4364813
  1400 Item1 -2.1259980     0 0.2126244
  1401 Item1  0.7717730     0 0.7950139
  1402 Item1  2.7036203     0 0.9704721
  1403 Item1 -0.8380998     0 0.4258949
  1404 Item1  0.7717730     0 0.7950139
  1405 Item1 -0.1941507     1 0.3698991
  1406 Item1 -0.1941507     1 0.3698991
  1407 Item1  0.1278239     0 0.6607947
  1408 Item1  0.4497985     1 0.5093386
  1409 Item1  2.3816458     1 0.8774494
  1410 Item1  0.7717730     0 0.7950139
  1411 Item1 -1.8040234     0 0.2500383
  1412 Item1 -0.5161252     0 0.5025621
  1413 Item1 -0.8380998     1 0.2639710
  1414 Item1 -1.1600743     0 0.3567994
  1415 Item1 -0.8380998     0 0.4258949
  1416 Item1  1.7376967     0 0.9181070
  1417 Item1  1.0937476     1 0.6585473
  1418 Item1  0.4497985     0 0.7326843
  1419 Item1 -2.1259980     0 0.2126244
  1420 Item1  0.7717730     1 0.5847767
  1421 Item1 -0.5161252     1 0.3120550
  1422 Item1  0.4497985     1 0.5093386
  1423 Item1  0.1278239     1 0.4364813
  1424 Item1  1.0937476     0 0.8463985
  1425 Item1  0.1278239     0 0.6607947
  1426 Item1  0.4497985     0 0.7326843
  1427 Item1  0.1278239     0 0.6607947
  1428 Item1 -1.4820489     0 0.2979029
  1429 Item1 -0.8380998     0 0.4258949
  1430 Item1 -1.4820489     1 0.1954771
  1431 Item1  1.4157221     1 0.7267631
  1432 Item1 -0.5161252     1 0.3120550
  1433 Item1 -0.1941507     0 0.5825445
  1434 Item1 -0.5161252     0 0.5025621
  1435 Item1 -0.8380998     0 0.4258949
  1436 Item1 -1.4820489     1 0.1954771
  1437 Item1  0.4497985     0 0.7326843
  1438 Item1  2.3816458     0 0.9582384
  1439 Item1  0.4497985     0 0.7326843
  1440 Item1 -0.5161252     0 0.5025621
  1441 Item1 -1.4820489     1 0.1954771
  1442 Item1  0.4497985     0 0.7326843
  1443 Item1  0.7717730     1 0.5847767
  1444 Item1 -0.1941507     0 0.5825445
  1445 Item1  1.0937476     0 0.8463985
  1446 Item1 -0.8380998     1 0.2639710
  1447 Item1  1.7376967     1 0.7866563
  1448 Item1 -1.1600743     0 0.3567994
  1449 Item1  0.1278239     0 0.6607947
  1450 Item1  1.4157221     1 0.7267631
  1451 Item1  1.4157221     0 0.8870283
  1452 Item1  0.1278239     1 0.4364813
  1453 Item1 -0.1941507     1 0.3698991
  1454 Item1 -0.8380998     0 0.4258949
  1455 Item1  0.7717730     1 0.5847767
  1456 Item1  1.0937476     1 0.6585473
  1457 Item1  0.4497985     0 0.7326843
  1458 Item1 -0.5161252     1 0.3120550
  1459 Item1  0.4497985     1 0.5093386
  1460 Item1 -1.8040234     0 0.2500383
  1461 Item1 -0.5161252     0 0.5025621
  1462 Item1  0.7717730     1 0.5847767
  1463 Item1 -0.5161252     1 0.3120550
  1464 Item1 -0.8380998     1 0.2639710
  1465 Item1  0.7717730     0 0.7950139
  1466 Item1  0.4497985     1 0.5093386
  1467 Item1  0.4497985     1 0.5093386
  1468 Item1  0.4497985     1 0.5093386
  1469 Item1  0.1278239     0 0.6607947
  1470 Item1 -1.4820489     1 0.1954771
  1471 Item1 -0.5161252     0 0.5025621
  1472 Item1  2.0596712     1 0.8368960
  1473 Item1 -2.1259980     0 0.2126244
  1474 Item1  0.7717730     0 0.7950139
  1475 Item1 -0.1941507     1 0.3698991
  1476 Item1 -1.4820489     0 0.2979029
  1477 Item1  0.4497985     0 0.7326843
  1478 Item1 -2.1259980     1 0.1556872
  1479 Item1  1.0937476     0 0.8463985
  1480 Item1  0.4497985     0 0.7326843
  1481 Item1 -0.1941507     1 0.3698991
  1482 Item1  1.0937476     0 0.8463985
  1483 Item1 -0.1941507     1 0.3698991
  1484 Item1  2.3816458     0 0.9582384
  1485 Item1  0.1278239     1 0.4364813
  1486 Item1  0.4497985     1 0.5093386
  1487 Item1 -1.4820489     0 0.2979029
  1488 Item1  1.4157221     1 0.7267631
  1489 Item1  0.1278239     1 0.4364813
  1490 Item1  0.1278239     0 0.6607947
  1491 Item1  0.1278239     0 0.6607947
  1492 Item1 -0.5161252     1 0.3120550
  1493 Item1  0.4497985     1 0.5093386
  1494 Item1  0.4497985     0 0.7326843
  1495 Item1 -0.1941507     0 0.5825445
  1496 Item1 -0.1941507     1 0.3698991
  1497 Item1  0.1278239     1 0.4364813
  1498 Item1  0.7717730     0 0.7950139
  1499 Item1  0.1278239     0 0.6607947
  1500 Item1 -0.1941507     0 0.5825445
  1501 Item1  0.4497985     0 0.7326843
  1502 Item1  0.4497985     1 0.5093386
  1503 Item1  1.7376967     0 0.9181070
  1504 Item1 -1.4820489     1 0.1954771
  1505 Item1  0.7717730     0 0.7950139
  1506 Item1  0.1278239     0 0.6607947
  1507 Item1 -1.1600743     1 0.2254449
  1508 Item1  0.4497985     1 0.5093386
  1509 Item1 -1.4820489     1 0.1954771
  1510 Item1  0.4497985     1 0.5093386
  1511 Item1 -0.8380998     1 0.2639710
  1512 Item1  0.1278239     1 0.4364813
  1513 Item1 -0.1941507     1 0.3698991
  1514 Item1 -0.8380998     1 0.2639710
  1515 Item1 -0.1941507     0 0.5825445
  1516 Item1 -0.8380998     0 0.4258949
  1517 Item1 -0.1941507     0 0.5825445
  1518 Item1 -0.5161252     0 0.5025621
  1519 Item1 -1.8040234     1 0.1726988
  1520 Item1  0.4497985     0 0.7326843
  1521 Item1  0.1278239     1 0.4364813
  1522 Item1  1.0937476     1 0.6585473
  1523 Item1 -0.5161252     0 0.5025621
  1524 Item1  0.7717730     0 0.7950139
  1525 Item1  0.4497985     1 0.5093386
  1526 Item1  0.1278239     0 0.6607947
  1527 Item1 -1.8040234     0 0.2500383
  1528 Item1  0.1278239     0 0.6607947
  1529 Item1 -0.1941507     0 0.5825445
  1530 Item1  0.1278239     0 0.6607947
  1531 Item1 -0.8380998     0 0.4258949
  1532 Item1  1.7376967     1 0.7866563
  1533 Item1  0.4497985     0 0.7326843
  1534 Item1  0.1278239     1 0.4364813
  1535 Item1 -0.5161252     1 0.3120550
  1536 Item1  2.0596712     0 0.9412824
  1537 Item1 -0.8380998     1 0.2639710
  1538 Item1 -0.5161252     0 0.5025621
  1539 Item1  0.1278239     0 0.6607947
  1540 Item1 -0.1941507     0 0.5825445
  1541 Item1  1.0937476     0 0.8463985
  1542 Item1  0.1278239     0 0.6607947
  1543 Item1 -1.8040234     0 0.2500383
  1544 Item1 -0.1941507     1 0.3698991
  1545 Item1  1.0937476     0 0.8463985
  1546 Item1  1.0937476     0 0.8463985
  1547 Item1 -0.5161252     1 0.3120550
  1548 Item1  0.1278239     0 0.6607947
  1549 Item1  0.1278239     0 0.6607947
  1550 Item1 -1.8040234     1 0.1726988
  1551 Item1 -0.8380998     1 0.2639710
  1552 Item1 -1.1600743     1 0.2254449
  1553 Item1 -1.4820489     0 0.2979029
  1554 Item1 -0.1941507     1 0.3698991
  1555 Item1  0.1278239     1 0.4364813
  1556 Item1 -0.5161252     1 0.3120550
  1557 Item1  0.7717730     1 0.5847767
  1558 Item1 -1.1600743     1 0.2254449
  1559 Item1  1.0937476     1 0.6585473
  1560 Item1 -1.1600743     0 0.3567994
  1561 Item1 -2.4479725     0 0.1842596
  1562 Item1  0.7717730     1 0.5847767
  1563 Item1  2.0596712     0 0.9412824
  1564 Item1  0.7717730     1 0.5847767
  1565 Item1  1.0937476     1 0.6585473
  1566 Item1  0.1278239     0 0.6607947
  1567 Item1 -0.5161252     0 0.5025621
  1568 Item1  2.0596712     0 0.9412824
  1569 Item1 -1.8040234     1 0.1726988
  1570 Item1  0.1278239     1 0.4364813
  1571 Item1  0.7717730     0 0.7950139
  1572 Item1  1.0937476     1 0.6585473
  1573 Item1  0.4497985     0 0.7326843
  1574 Item1  0.1278239     1 0.4364813
  1575 Item1 -0.1941507     1 0.3698991
  1576 Item1  0.7717730     1 0.5847767
  1577 Item1 -0.5161252     1 0.3120550
  1578 Item1  0.7717730     1 0.5847767
  1579 Item1  0.7717730     1 0.5847767
  1580 Item1  1.0937476     0 0.8463985
  1581 Item1 -1.8040234     0 0.2500383
  1582 Item1 -0.1941507     1 0.3698991
  1583 Item1  2.0596712     1 0.8368960
  1584 Item1 -1.8040234     1 0.1726988
  1585 Item1  1.4157221     0 0.8870283
  1586 Item1  1.4157221     1 0.7267631
  1587 Item1  0.7717730     1 0.5847767
  1588 Item1 -1.4820489     0 0.2979029
  1589 Item1 -1.4820489     1 0.1954771
  1590 Item1  0.4497985     0 0.7326843
  1591 Item1  0.4497985     0 0.7326843
  1592 Item1 -1.1600743     0 0.3567994
  1593 Item1  0.7717730     1 0.5847767
  1594 Item1 -0.8380998     1 0.2639710
  1595 Item1  0.7717730     1 0.5847767
  1596 Item1  0.4497985     1 0.5093386
  1597 Item1  0.7717730     0 0.7950139
  1598 Item1 -0.8380998     1 0.2639710
  1599 Item1  0.7717730     0 0.7950139
  1600 Item1  0.4497985     1 0.5093386
  1601 Item1  0.7717730     1 0.5847767
  1602 Item1  2.7036203     0 0.9704721
  1603 Item1 -2.7699471     0 0.1632496
  1604 Item1 -0.1941507     1 0.3698991
  1605 Item1  0.1278239     0 0.6607947
  1606 Item1  0.4497985     0 0.7326843
  1607 Item1 -0.1941507     1 0.3698991
  1608 Item1 -0.1941507     1 0.3698991
  1609 Item1 -1.4820489     0 0.2979029
  1610 Item1  0.4497985     1 0.5093386
  1611 Item1 -0.1941507     0 0.5825445
  1612 Item1 -0.1941507     1 0.3698991
  1613 Item1  0.4497985     0 0.7326843
  1614 Item1 -1.8040234     0 0.2500383
  1615 Item1  1.4157221     0 0.8870283
  1616 Item1 -0.1941507     0 0.5825445
  1617 Item1  0.4497985     1 0.5093386
  1618 Item1 -0.8380998     1 0.2639710
  1619 Item1  0.1278239     1 0.4364813
  1620 Item1 -1.4820489     1 0.1954771
  1621 Item1  0.7717730     1 0.5847767
  1622 Item1  0.7717730     0 0.7950139
  1623 Item1 -0.1941507     0 0.5825445
  1624 Item1  0.4497985     1 0.5093386
  1625 Item1 -1.1600743     0 0.3567994
  1626 Item1 -2.1259980     0 0.2126244
  1627 Item1  0.1278239     0 0.6607947
  1628 Item1  0.4497985     0 0.7326843
  1629 Item1  1.4157221     0 0.8870283
  1630 Item1  0.4497985     0 0.7326843
  1631 Item1 -0.1941507     0 0.5825445
  1632 Item1 -0.8380998     0 0.4258949
  1633 Item1  0.4497985     1 0.5093386
  1634 Item1  0.1278239     0 0.6607947
  1635 Item1 -0.8380998     1 0.2639710
  1636 Item1  0.4497985     0 0.7326843
  1637 Item1  0.4497985     0 0.7326843
  1638 Item1  0.4497985     0 0.7326843
  1639 Item1 -0.5161252     1 0.3120550
  1640 Item1  0.4497985     1 0.5093386
  1641 Item1  1.4157221     0 0.8870283
  1642 Item1  0.1278239     0 0.6607947
  1643 Item1 -0.8380998     0 0.4258949
  1644 Item1  0.1278239     0 0.6607947
  1645 Item1  0.4497985     1 0.5093386
  1646 Item1  0.7717730     0 0.7950139
  1647 Item1 -1.4820489     0 0.2979029
  1648 Item1  0.4497985     0 0.7326843
  1649 Item1 -0.5161252     0 0.5025621
  1650 Item1 -0.5161252     0 0.5025621
  1651 Item1 -0.5161252     1 0.3120550
  1652 Item1  0.7717730     0 0.7950139
  1653 Item1 -0.5161252     1 0.3120550
  1654 Item1  0.4497985     1 0.5093386
  1655 Item1  0.1278239     1 0.4364813
  1656 Item1 -0.1941507     0 0.5825445
  1657 Item1 -0.8380998     1 0.2639710
  1658 Item1  0.1278239     1 0.4364813
  1659 Item1 -1.4820489     1 0.1954771
  1660 Item1  0.7717730     0 0.7950139
  1661 Item1  1.0937476     1 0.6585473
  1662 Item1  0.7717730     0 0.7950139
  1663 Item1  2.0596712     0 0.9412824
  1664 Item1  0.4497985     1 0.5093386
  1665 Item1 -1.4820489     0 0.2979029
  1666 Item1  0.4497985     1 0.5093386
  1667 Item1  0.7717730     1 0.5847767
  1668 Item1  1.0937476     0 0.8463985
  1669 Item1 -2.4479725     1 0.1431489
  1670 Item1  0.1278239     0 0.6607947
  1671 Item1 -0.5161252     1 0.3120550
  1672 Item1 -0.5161252     1 0.3120550
  1673 Item1 -0.5161252     0 0.5025621
  1674 Item1 -2.1259980     0 0.2126244
  1675 Item1 -0.8380998     0 0.4258949
  1676 Item1 -0.5161252     0 0.5025621
  1677 Item1  0.4497985     0 0.7326843
  1678 Item1  0.4497985     1 0.5093386
  1679 Item1  0.4497985     1 0.5093386
  1680 Item1  0.4497985     0 0.7326843
  1681 Item1 -0.8380998     0 0.4258949
  1682 Item1 -1.4820489     0 0.2979029
  1683 Item1 -0.1941507     0 0.5825445
  1684 Item1  0.4497985     0 0.7326843
  1685 Item1 -0.5161252     0 0.5025621
  1686 Item1 -0.8380998     0 0.4258949
  1687 Item1 -0.8380998     1 0.2639710
  1688 Item1 -0.8380998     1 0.2639710
  1689 Item1 -1.1600743     1 0.2254449
  1690 Item1  1.4157221     1 0.7267631
  1691 Item1 -0.1941507     1 0.3698991
  1692 Item1 -0.1941507     0 0.5825445
  1693 Item1 -0.5161252     0 0.5025621
  1694 Item1 -1.8040234     0 0.2500383
  1695 Item1  1.0937476     1 0.6585473
  1696 Item1 -0.5161252     1 0.3120550
  1697 Item1 -0.1941507     1 0.3698991
  1698 Item1  1.0937476     1 0.6585473
  1699 Item1  0.1278239     1 0.4364813
  1700 Item1  0.1278239     1 0.4364813
  1701 Item1 -2.1259980     1 0.1556872
  1702 Item1 -2.4479725     1 0.1431489
  1703 Item1 -0.1941507     0 0.5825445
  1704 Item1 -0.5161252     0 0.5025621
  1705 Item1 -0.1941507     1 0.3698991
  1706 Item1 -0.8380998     1 0.2639710
  1707 Item1  1.4157221     1 0.7267631
  1708 Item1  0.1278239     0 0.6607947
  1709 Item1  1.7376967     0 0.9181070
  1710 Item1 -0.1941507     0 0.5825445
  1711 Item1 -1.4820489     1 0.1954771
  1712 Item1 -1.1600743     0 0.3567994
  1713 Item1 -0.8380998     1 0.2639710
  1714 Item1 -0.1941507     0 0.5825445
  1715 Item1 -0.5161252     1 0.3120550
  1716 Item1  0.1278239     1 0.4364813
  1717 Item1  2.0596712     0 0.9412824
  1718 Item1 -0.5161252     0 0.5025621
  1719 Item1 -1.1600743     1 0.2254449
  1720 Item1 -0.8380998     1 0.2639710
  1721 Item1  0.1278239     0 0.6607947
  1722 Item1 -1.1600743     1 0.2254449
  1723 Item1  0.4497985     0 0.7326843
  1724 Item1 -0.1941507     1 0.3698991
  1725 Item1  0.4497985     1 0.5093386
  1726 Item1  1.0937476     1 0.6585473
  1727 Item1  0.7717730     1 0.5847767
  1728 Item1 -1.1600743     1 0.2254449
  1729 Item1  0.7717730     1 0.5847767
  1730 Item1 -1.4820489     1 0.1954771
  1731 Item1 -0.1941507     1 0.3698991
  1732 Item1  0.1278239     1 0.4364813
  1733 Item1  1.0937476     0 0.8463985
  1734 Item1 -0.1941507     0 0.5825445
  1735 Item1  0.1278239     0 0.6607947
  1736 Item1  0.4497985     1 0.5093386
  1737 Item1 -1.8040234     1 0.1726988
  1738 Item1  1.0937476     1 0.6585473
  1739 Item1 -0.8380998     1 0.2639710
  1740 Item1  0.4497985     1 0.5093386
  1741 Item1  0.7717730     1 0.5847767
  1742 Item1 -1.4820489     0 0.2979029
  1743 Item1  0.1278239     1 0.4364813
  1744 Item1  2.7036203     0 0.9704721
  1745 Item1  0.4497985     1 0.5093386
  1746 Item1 -0.1941507     1 0.3698991
  1747 Item1 -0.8380998     1 0.2639710
  1748 Item1 -0.5161252     1 0.3120550
  1749 Item1  1.0937476     0 0.8463985
  1750 Item1 -1.8040234     1 0.1726988
  1751 Item1 -0.8380998     0 0.4258949
  1752 Item1  0.4497985     0 0.7326843
  1753 Item1 -0.8380998     1 0.2639710
  1754 Item1  2.3816458     0 0.9582384
  1755 Item1 -0.5161252     1 0.3120550
  1756 Item1  1.0937476     1 0.6585473
  1757 Item1 -0.5161252     0 0.5025621
  1758 Item1 -0.8380998     1 0.2639710
  1759 Item1 -0.5161252     1 0.3120550
  1760 Item1  1.4157221     1 0.7267631
  1761 Item1  1.0937476     0 0.8463985
  1762 Item1 -1.8040234     0 0.2500383
  1763 Item1 -0.5161252     1 0.3120550
  1764 Item1 -0.5161252     0 0.5025621
  1765 Item1  0.7717730     1 0.5847767
  1766 Item1  2.3816458     1 0.8774494
  1767 Item1  2.3816458     0 0.9582384
  1768 Item1  0.1278239     0 0.6607947
  1769 Item1  0.4497985     1 0.5093386
  1770 Item1  1.0937476     0 0.8463985
  1771 Item1 -1.1600743     0 0.3567994
  1772 Item1 -1.4820489     0 0.2979029
  1773 Item1  0.7717730     0 0.7950139
  1774 Item1  0.7717730     1 0.5847767
  1775 Item1 -2.4479725     0 0.1842596
  1776 Item1  1.4157221     0 0.8870283
  1777 Item1  0.1278239     0 0.6607947
  1778 Item1  0.1278239     1 0.4364813
  1779 Item1 -1.1600743     1 0.2254449
  1780 Item1 -0.1941507     1 0.3698991
  1781 Item1  1.7376967     1 0.7866563
  1782 Item1 -1.4820489     0 0.2979029
  1783 Item1 -0.8380998     1 0.2639710
  1784 Item1  0.4497985     1 0.5093386
  1785 Item1 -2.1259980     0 0.2126244
  1786 Item1 -1.8040234     1 0.1726988
  1787 Item1 -0.1941507     1 0.3698991
  1788 Item1  1.0937476     1 0.6585473
  1789 Item1  0.7717730     0 0.7950139
  1790 Item1  0.7717730     0 0.7950139
  1791 Item1 -0.8380998     0 0.4258949
  1792 Item1  0.7717730     1 0.5847767
  1793 Item1  0.7717730     0 0.7950139
  1794 Item1  0.7717730     1 0.5847767
  1795 Item1  2.0596712     0 0.9412824
  1796 Item1  1.0937476     1 0.6585473
  1797 Item1 -0.1941507     1 0.3698991
  1798 Item1  0.7717730     0 0.7950139
  1799 Item1  0.7717730     1 0.5847767
  1800 Item1 -0.1941507     0 0.5825445
  1801 Item1 -0.5161252     1 0.3120550
  1802 Item1  0.7717730     1 0.5847767
  1803 Item1  1.7376967     1 0.7866563
  1804 Item1 -0.5161252     1 0.3120550
  1805 Item1 -0.1941507     0 0.5825445
  1806 Item1 -0.1941507     0 0.5825445
  1807 Item1 -1.1600743     0 0.3567994
  1808 Item1 -0.5161252     0 0.5025621
  1809 Item1  0.1278239     1 0.4364813
  1810 Item1 -0.1941507     0 0.5825445
  1811 Item1 -0.8380998     0 0.4258949
  1812 Item1  1.4157221     0 0.8870283
  1813 Item1 -0.5161252     1 0.3120550
  1814 Item1  0.4497985     1 0.5093386
  1815 Item1 -2.1259980     0 0.2126244
  1816 Item1 -0.1941507     1 0.3698991
  1817 Item1  1.0937476     0 0.8463985
  1818 Item1 -1.1600743     1 0.2254449
  1819 Item1  0.1278239     0 0.6607947
  1820 Item1 -1.1600743     1 0.2254449
  1821 Item1 -0.1941507     1 0.3698991
  1822 Item1  1.7376967     0 0.9181070
  1823 Item1  0.1278239     1 0.4364813
  1824 Item1 -0.5161252     1 0.3120550
  1825 Item1 -1.1600743     1 0.2254449
  1826 Item1 -0.8380998     1 0.2639710
  1827 Item1  0.4497985     0 0.7326843
  1828 Item1  1.7376967     1 0.7866563
  1829 Item1 -1.8040234     1 0.1726988
  1830 Item1 -1.8040234     1 0.1726988
  1831 Item1 -0.1941507     0 0.5825445
  1832 Item1  0.4497985     1 0.5093386
  1833 Item1  0.1278239     0 0.6607947
  1834 Item1 -0.1941507     1 0.3698991
  1835 Item1 -1.1600743     1 0.2254449
  1836 Item1 -1.4820489     0 0.2979029
  1837 Item1  0.4497985     1 0.5093386
  1838 Item1 -1.1600743     0 0.3567994
  1839 Item1  0.1278239     1 0.4364813
  1840 Item1  0.4497985     1 0.5093386
  1841 Item1 -0.5161252     0 0.5025621
  1842 Item1  0.4497985     0 0.7326843
  1843 Item1  1.7376967     1 0.7866563
  1844 Item1 -0.1941507     1 0.3698991
  1845 Item1 -0.5161252     0 0.5025621
  1846 Item1  1.7376967     1 0.7866563
  1847 Item1  0.1278239     0 0.6607947
  1848 Item1 -1.8040234     1 0.1726988
  1849 Item1  0.1278239     0 0.6607947
  1850 Item1 -1.4820489     1 0.1954771
  1851 Item1 -0.5161252     0 0.5025621
  1852 Item1 -0.8380998     1 0.2639710
  1853 Item1 -0.8380998     1 0.2639710
  1854 Item1  0.1278239     0 0.6607947
  1855 Item1  0.7717730     1 0.5847767
  1856 Item1  1.0937476     0 0.8463985
  1857 Item1 -1.1600743     1 0.2254449
  1858 Item1 -0.5161252     1 0.3120550
  1859 Item1 -0.1941507     0 0.5825445
  1860 Item1  0.1278239     1 0.4364813
  1861 Item1  0.1278239     1 0.4364813
  1862 Item1 -1.1600743     0 0.3567994
  1863 Item1 -2.1259980     0 0.2126244
  1864 Item1 -1.1600743     1 0.2254449
  1865 Item1 -0.5161252     1 0.3120550
  1866 Item1  0.7717730     0 0.7950139
  1867 Item1  0.7717730     0 0.7950139
  1868 Item1  0.1278239     1 0.4364813
  1869 Item1 -0.8380998     1 0.2639710
  1870 Item1  0.7717730     1 0.5847767
  1871 Item1  1.0937476     1 0.6585473
  1872 Item1 -0.1941507     0 0.5825445
  1873 Item1  1.0937476     0 0.8463985
  1874 Item1  0.1278239     0 0.6607947
  1875 Item1  1.0937476     1 0.6585473
  1876 Item1 -0.1941507     1 0.3698991
  1877 Item1 -1.1600743     0 0.3567994
  1878 Item1  1.0937476     1 0.6585473
  1879 Item1  0.1278239     0 0.6607947
  1880 Item1  0.7717730     0 0.7950139
  1881 Item1  1.4157221     0 0.8870283
  1882 Item1 -0.1941507     0 0.5825445
  1883 Item1 -0.1941507     1 0.3698991
  1884 Item1 -1.4820489     0 0.2979029
  1885 Item1  1.4157221     1 0.7267631
  1886 Item1  1.0937476     1 0.6585473
  1887 Item1  0.4497985     0 0.7326843
  1888 Item1  0.1278239     1 0.4364813
  1889 Item1  1.0937476     1 0.6585473
  1890 Item1 -0.8380998     0 0.4258949
  1891 Item1 -1.8040234     1 0.1726988
  1892 Item1 -0.5161252     0 0.5025621
  1893 Item1 -1.4820489     1 0.1954771
  1894 Item1  0.4497985     1 0.5093386
  1895 Item1 -0.8380998     0 0.4258949
  1896 Item1 -0.5161252     0 0.5025621
  1897 Item1 -0.1941507     0 0.5825445
  1898 Item1 -0.1941507     0 0.5825445
  1899 Item1  1.0937476     0 0.8463985
  1900 Item1 -0.1941507     0 0.5825445
  1901 Item1  0.1278239     1 0.4364813
  1902 Item1  0.7717730     1 0.5847767
  1903 Item1  0.1278239     0 0.6607947
  1904 Item1 -0.5161252     1 0.3120550
  1905 Item1  0.4497985     0 0.7326843
  1906 Item1  1.4157221     1 0.7267631
  1907 Item1 -1.4820489     0 0.2979029
  1908 Item1  0.4497985     0 0.7326843
  1909 Item1  0.4497985     0 0.7326843
  1910 Item1 -0.5161252     1 0.3120550
  1911 Item1  0.4497985     0 0.7326843
  1912 Item1  0.1278239     0 0.6607947
  1913 Item1 -0.5161252     1 0.3120550
  1914 Item1  1.0937476     0 0.8463985
  1915 Item1 -0.1941507     1 0.3698991
  1916 Item1 -0.5161252     0 0.5025621
  1917 Item1  1.4157221     1 0.7267631
  1918 Item1  0.7717730     0 0.7950139
  1919 Item1 -0.5161252     1 0.3120550
  1920 Item1  0.4497985     0 0.7326843
  1921 Item1 -0.1941507     1 0.3698991
  1922 Item1 -0.1941507     1 0.3698991
  1923 Item1 -1.4820489     1 0.1954771
  1924 Item1 -1.8040234     1 0.1726988
  1925 Item1  1.7376967     0 0.9181070
  1926 Item1 -0.8380998     1 0.2639710
  1927 Item1 -0.1941507     0 0.5825445
  1928 Item1 -1.1600743     0 0.3567994
  1929 Item1  1.0937476     1 0.6585473
  1930 Item1 -0.8380998     0 0.4258949
  1931 Item1 -1.8040234     0 0.2500383
  1932 Item1  0.4497985     1 0.5093386
  1933 Item1  0.1278239     0 0.6607947
  1934 Item1 -0.8380998     1 0.2639710
  1935 Item1 -0.5161252     0 0.5025621
  1936 Item1  0.4497985     1 0.5093386
  1937 Item1  1.0937476     0 0.8463985
  1938 Item1 -0.8380998     1 0.2639710
  1939 Item1 -1.8040234     0 0.2500383
  1940 Item1 -0.1941507     0 0.5825445
  1941 Item1  0.1278239     1 0.4364813
  1942 Item1  0.4497985     1 0.5093386
  1943 Item1  0.1278239     0 0.6607947
  1944 Item1 -1.1600743     1 0.2254449
  1945 Item1  0.1278239     1 0.4364813
  1946 Item1  1.4157221     0 0.8870283
  1947 Item1  0.7717730     1 0.5847767
  1948 Item1  0.4497985     0 0.7326843
  1949 Item1  0.4497985     0 0.7326843
  1950 Item1 -0.5161252     1 0.3120550
  1951 Item1  1.0937476     1 0.6585473
  1952 Item1  2.7036203     1 0.9091805
  1953 Item1 -1.4820489     0 0.2979029
  1954 Item1  1.4157221     1 0.7267631
  1955 Item1 -0.5161252     0 0.5025621
  1956 Item1 -0.8380998     0 0.4258949
  1957 Item1  0.1278239     0 0.6607947
  1958 Item1 -0.5161252     1 0.3120550
  1959 Item1  0.4497985     0 0.7326843
  1960 Item1  0.4497985     0 0.7326843
  1961 Item1 -1.1600743     0 0.3567994
  1962 Item1  1.0937476     0 0.8463985
  1963 Item1  0.4497985     1 0.5093386
  1964 Item1  0.7717730     1 0.5847767
  1965 Item1 -0.1941507     0 0.5825445
  1966 Item1 -1.1600743     0 0.3567994
  1967 Item1  1.0937476     1 0.6585473
  1968 Item1  1.4157221     1 0.7267631
  1969 Item1  0.1278239     1 0.4364813
  1970 Item1  1.0937476     0 0.8463985
  1971 Item1  0.7717730     1 0.5847767
  1972 Item1 -0.1941507     0 0.5825445
  1973 Item1 -0.1941507     0 0.5825445
  1974 Item1 -1.4820489     1 0.1954771
  1975 Item1 -0.1941507     0 0.5825445
  1976 Item1  0.4497985     0 0.7326843
  1977 Item1 -0.5161252     0 0.5025621
  1978 Item1 -0.8380998     0 0.4258949
  1979 Item1 -0.5161252     1 0.3120550
  1980 Item1 -2.1259980     1 0.1556872
  1981 Item1 -1.1600743     0 0.3567994
  1982 Item1  0.1278239     0 0.6607947
  1983 Item1  0.4497985     1 0.5093386
  1984 Item1 -1.1600743     0 0.3567994
  1985 Item1 -0.8380998     1 0.2639710
  1986 Item1 -1.1600743     0 0.3567994
  1987 Item1  0.1278239     1 0.4364813
  1988 Item1  0.4497985     0 0.7326843
  1989 Item1 -1.4820489     0 0.2979029
  1990 Item1  2.0596712     1 0.8368960
  1991 Item1 -0.5161252     1 0.3120550
  1992 Item1  0.1278239     0 0.6607947
  1993 Item1 -1.4820489     0 0.2979029
  1994 Item1  0.4497985     0 0.7326843
  1995 Item1  2.0596712     1 0.8368960
  1996 Item1  0.4497985     1 0.5093386
  1997 Item1  0.1278239     1 0.4364813
  1998 Item1  0.4497985     0 0.7326843
  1999 Item1  0.4497985     0 0.7326843
  2000 Item1  1.4157221     1 0.7267631
Code
  predict(fit1, item = 1, match = 0, group = c(0, 1))
Output
     item match group      prob
  1 Item1     0     0 0.6302562
  2 Item1     0     1 0.4091277
Code
  AIC(fit1)
Output
   [1] 2515.030 2549.043 2342.008 2013.198 1670.650 2455.279 2518.547 2598.912
   [9] 2693.296 2695.274 2371.996 2694.215 2221.522 2624.144 2737.446 2527.643
  [17] 2738.945 2484.224 2607.867 2613.890
Code
  BIC(fit1)
Output
   [1] 2543.035 2577.048 2358.811 2030.000 1687.453 2472.082 2546.552 2615.714
   [9] 2710.099 2712.076 2388.799 2711.018 2238.325 2640.947 2754.248 2544.446
  [17] 2755.748 2501.027 2635.871 2630.693
Code
  logLik(fit1)
Output
   [1] -1252.515 -1269.522 -1168.004 -1003.599  -832.325 -1224.639 -1254.274
   [8] -1296.456 -1343.648 -1344.637 -1182.998 -1344.108 -1107.761 -1309.072
  [15] -1365.723 -1260.821 -1366.473 -1239.112 -1298.933 -1303.945
Code
  AIC(fit1, item = 1)
Output
  [1] 2515.03
Code
  BIC(fit1, item = 1)
Output
  [1] 2543.035
Code
  logLik(fit1, item = 1)
Output
  'log Lik.' -1252.515 (df=5)
Code
  (fit2 <- difNLR(Data, group, focal.name = 1, model = "3PLcg", test = "W"))
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression Wald test statistics
  based on 3PL model with fixed guessing for groups

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1  41.9145      0.0000 ***
  Item2  14.7397      0.0006 ***
  Item3   0.6903      0.7081    
  Item4   2.8622      0.2390    
  Item5   1.0890      0.5801    
  Item6   0.1547      0.9256    
  Item7   5.6898      0.0581 .  
  Item8   2.4127      0.2993    
  Item9   0.4219      0.8098    
  Item10  1.1699      0.5571    
  Item11  1.2022      0.5482    
  Item12  1.0143      0.6022    
  Item13  3.8549      0.1455    
  Item14  1.4149      0.4929    
  Item15  1.1084      0.5745    
  Item16  0.1394      0.9327    
  Item17  2.5649      0.2774    
  Item18  1.9413      0.3788    
  Item19  4.8067      0.0904 .  
  Item20  3.1155      0.2106

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 5.9915 (significance level: 0.05)

  Items detected as DIF items:
   Item1
   Item2
Code
  (fit3 <- difNLR(Data, group, focal.name = 1, model = "3PLcg", test = "F"))
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression F-test statistics
  based on 3PL model with fixed guessing for groups

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         F-value P-value    
  Item1  41.7833  0.0000 ***
  Item2  14.2267  0.0000 ***
  Item3   0.3414  0.7108    
  Item4   1.6500  0.1923    
  Item5   0.5979  0.5501    
  Item6   0.0784  0.9246    
  Item7   4.1498  0.0159 *  
  Item8   1.4304  0.2395    
  Item9   0.2269  0.7970    
  Item10  0.6739  0.5098    
  Item11  0.6202  0.5379    
  Item12  0.5257  0.5912    
  Item13  2.2039  0.1106    
  Item14  0.7454  0.4747    
  Item15  0.6525  0.5208    
  Item16  0.0710  0.9314    
  Item17  1.5809  0.2060    
  Item18  1.0083  0.3650    
  Item19  3.1244  0.0442 *  
  Item20  1.7407  0.1757

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 3.0002 (significance level: 0.05)

  Items detected as DIF items:
   Item1
   Item2
   Item7
   Item19
Code
  (fit4 <- difNLR(Data, group, focal.name = 1, model = "3PLcg", sandwich = TRUE))
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 3PL model with fixed guessing for groups

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1  82.0689      0.0000 ***
  Item2  28.3232      0.0000 ***
  Item3   0.6845      0.7102    
  Item4   3.3055      0.1915    
  Item5   1.1984      0.5492    
  Item6   0.1573      0.9244    
  Item7   8.3032      0.0157 *  
  Item8   2.8660      0.2386    
  Item9   0.4549      0.7966    
  Item10  1.3507      0.5090    
  Item11  1.2431      0.5371    
  Item12  1.0537      0.5905    
  Item13  4.4139      0.1100    
  Item14  1.4940      0.4738    
  Item15  1.3079      0.5200    
  Item16  0.1424      0.9313    
  Item17  3.1673      0.2052    
  Item18  2.0206      0.3641    
  Item19  6.2546      0.0438 *  
  Item20  3.4871      0.1749

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 5.9915 (significance level: 0.05)

  Items detected as DIF items:
   Item1
   Item2
   Item7
   Item19
Code
  (fit5 <- difNLR(Data, group, focal.name = 1, model = "3PLcg", p.adjust.method = "BH")
  )
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 3PL model with fixed guessing for groups

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  Multiple comparisons made with Benjamini-Hochberg adjustment of p-values

         Chisq-value P-value Adj. P-value    
  Item1  82.0689      0.0000  0.0000      ***
  Item2  28.3232      0.0000  0.0000      ***
  Item3   0.6845      0.7102  0.8355         
  Item4   3.3055      0.1915  0.5131         
  Item5   1.1984      0.5492  0.7323         
  Item6   0.1573      0.9244  0.9313         
  Item7   8.3032      0.0157  0.1049         
  Item8   2.8660      0.2386  0.5302         
  Item9   0.4549      0.7966  0.8851         
  Item10  1.3507      0.5090  0.7323         
  Item11  1.2431      0.5371  0.7323         
  Item12  1.0537      0.5905  0.7381         
  Item13  4.4139      0.1100  0.4401         
  Item14  1.4940      0.4738  0.7323         
  Item15  1.3079      0.5200  0.7323         
  Item16  0.1424      0.9313  0.9313         
  Item17  3.1673      0.2052  0.5131         
  Item18  2.0206      0.3641  0.7282         
  Item19  6.2546      0.0438  0.2192         
  Item20  3.4871      0.1749  0.5131

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 5.9915 (significance level: 0.05)

  Items detected as DIF items:
   Item1
   Item2
Code
  (fit6 <- difNLR(Data, group, focal.name = 1, model = "3PLcg", purify = TRUE))
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 3PL model with fixed guessing for groups

  Parameters were estimated using non-linear least squares

  Item purification was applied with 2 iterations.
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1  78.1279      0.0000 ***
  Item2  27.7354      0.0000 ***
  Item3   0.0027      0.9986    
  Item4   2.0028      0.3674    
  Item5   1.8701      0.3926    
  Item6   1.1317      0.5679    
  Item7   4.2269      0.1208    
  Item8   3.8019      0.1494    
  Item9   0.2162      0.8975    
  Item10  0.3917      0.8221    
  Item11  3.1631      0.2057    
  Item12  0.2259      0.8932    
  Item13  2.4394      0.2953    
  Item14  0.4483      0.7992    
  Item15  0.4197      0.8107    
  Item16  1.0382      0.5950    
  Item17  1.4373      0.4874    
  Item18  0.1553      0.9253    
  Item19  3.1764      0.2043    
  Item20  5.3659      0.0684 .

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 5.9915 (significance level: 0.05)

  Items detected as DIF items:
   Item1
   Item2
Code
  (fit7 <- difNLR(Data, group, focal.name = 1, model = "3PLcg", match = "score"))
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 3PL model with fixed guessing for groups

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1  82.0689      0.0000 ***
  Item2  28.3232      0.0000 ***
  Item3   0.6845      0.7102    
  Item4   3.3055      0.1915    
  Item5   1.1984      0.5492    
  Item6   0.1573      0.9244    
  Item7   8.3032      0.0157 *  
  Item8   2.8660      0.2386    
  Item9   0.4549      0.7966    
  Item10  1.3507      0.5090    
  Item11  1.2431      0.5371    
  Item12  1.0537      0.5905    
  Item13  4.4139      0.1100    
  Item14  1.4940      0.4738    
  Item15  1.3079      0.5200    
  Item16  0.1424      0.9313    
  Item17  3.1673      0.2052    
  Item18  2.0206      0.3641    
  Item19  6.2546      0.0438 *  
  Item20  3.4871      0.1749

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 5.9915 (significance level: 0.05)

  Items detected as DIF items:
   Item1
   Item2
   Item7
   Item19
Code
  (fit8 <- difNLR(Data, group, focal.name = 1, model = "4PLcgdg", type = "udif"))
Output
  Detection of uniform differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 4PL model with fixed guessing and inattention parameter for groups

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1  81.9549      0.0000 ***
  Item2  14.5542      0.0001 ***
  Item3   0.3153      0.5745    
  Item4   2.4851      0.1149    
  Item5   0.0007      0.9793    
  Item6   0.0716      0.7890    
  Item7   7.9741      0.0047 ** 
  Item8   0.1516      0.6970    
  Item9   0.0948      0.7582    
  Item10  0.9293      0.3350    
  Item11  0.3832      0.5359    
  Item12  0.5839      0.4448    
  Item13  2.0124      0.1560    
  Item14  1.1316      0.2874    
  Item15  0.8492      0.3568    
  Item16  0.0204      0.8864    
  Item17  2.8934      0.0889 .  
  Item18  1.7608      0.1845    
  Item19  2.1632      0.1414    
  Item20  1.6239      0.2025

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 3.8415 (significance level: 0.05)

  Items detected as DIF items:
   Item1
   Item2
   Item7
Code
  (fit9 <- difNLR(Data, group, focal.name = 1, model = "2PL", type = "nudif"))
Output
  Detection of non-uniform differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 2PL model

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1   1.4694      0.2254    
  Item2  12.8761      0.0003 ***
  Item3   0.2241      0.6359    
  Item4   0.8464      0.3576    
  Item5   1.7056      0.1916    
  Item6   0.0902      0.7639    
  Item7   0.3291      0.5662    
  Item8   2.7878      0.0950 .  
  Item9   0.3482      0.5551    
  Item10  0.4159      0.5190    
  Item11  0.8829      0.3474    
  Item12  1.1279      0.2882    
  Item13  4.2949      0.0382 *  
  Item14  0.4103      0.5218    
  Item15  0.4587      0.4982    
  Item16  0.2215      0.6379    
  Item17  0.1550      0.6938    
  Item18  0.1909      0.6622    
  Item19  3.6780      0.0551 .  
  Item20  1.0065      0.3157

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 3.8415 (significance level: 0.05)

  Items detected as DIF items:
   Item2
   Item13
Code
  (fit10 <- difNLR(Data, group, focal.name = 1, model = "4PL", constraints = "ac",
    type = "b"))
Output
  Detection of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 4PL model  with constraints on parameters a, c

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1  17.3612      0.0000 ***
  Item2  17.5307      0.0000 ***
  Item3   0.0337      0.8543    
  Item4   0.0239      0.8771    
  Item5   0.0007      0.9793    
  Item6   0.0507      0.8218    
  Item7   3.3095      0.0689 .  
  Item8   1.3556      0.2443    
  Item9   0.1936      0.6599    
  Item10  0.4760      0.4902    
  Item11  0.0073      0.9319    
  Item12  0.2910      0.5896    
  Item13  0.1490      0.6995    
  Item14  0.4523      0.5012    
  Item15  0.5203      0.4707    
  Item16  0.0204      0.8864    
  Item17  1.0202      0.3125    
  Item18  1.3394      0.2471    
  Item19  4.8954      0.0269 *  
  Item20  1.0550      0.3044

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 3.8415 (significance level: 0.05)

  Items detected as DIF items:
   Item1
   Item2
   Item19
Code
  (fit11 <- difNLR(Data, group, focal.name = 1, model = "3PLcg", method = "mle"))
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 3PL model with fixed guessing for groups

  Parameters were estimated using maximum likelihood method 
  with the L-BFGS-B algorithm

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1  74.3235      0.0000 ***
  Item2  27.1120      0.0000 ***
  Item3   0.7401      0.6907    
  Item4   3.4097      0.1818    
  Item5   0.1188      0.9423    
  Item6   0.0989      0.9517    
  Item7   7.2097      0.0272 *  
  Item8   5.5471      0.0624 .  
  Item9   0.4107      0.8144    
  Item10  1.2497      0.5353    
  Item11  0.9490      0.6222    
  Item12  0.6327      0.7288    
  Item13  2.5885      0.2741    
  Item14  1.8876      0.3891    
  Item15  1.4200      0.4916    
  Item16  0.5303      0.7671    
  Item17  3.1490      0.2071    
  Item18  1.3752      0.5028    
  Item19  5.6279      0.0600 .  
  Item20  3.1076      0.2114

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 5.9915 (significance level: 0.05)

  Items detected as DIF items:
   Item1
   Item2
   Item7
Code
  (fit13 <- difNLR(Data, group, focal.name = 1, model = "3PLcg", method = "plf"))
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 3PL model with fixed guessing for groups

  Parameters were estimated using maximum likelihood method 
  with the PLF algorithm

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1  73.5354      0.0000 ***
  Item2  27.6368      0.0000 ***
  Item3   0.7401      0.6907    
  Item4   3.4110      0.1817    
  Item5   0.6804      0.7116    
  Item6   0.1073      0.9478    
  Item7   7.2092      0.0272 *  
  Item8   4.9733      0.0832 .  
  Item9   0.4276      0.8075    
  Item10  1.3559      0.5076    
  Item11  1.0097      0.6036    
  Item12  1.0773      0.5835    
  Item13  3.2177      0.2001    
  Item14  2.3594      0.3074    
  Item15  1.4200      0.4916    
  Item16  0.8646      0.6490    
  Item17  3.1339      0.2087    
  Item18  1.3752      0.5028    
  Item19  5.0306      0.0808 .  
  Item20  3.7682      0.1520

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 5.9915 (significance level: 0.05)

  Items detected as DIF items:
   Item1
   Item2
   Item7
Code
  (fit14 <- difNLR(Data, group, focal.name = 1, model = "2PL", method = "irls"))
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 2PL model

  Parameters were estimated using maximum likelihood method 
  with the iteratively reweighted least squares algorithm

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1  73.5146      0.0000 ***
  Item2  27.5609      0.0000 ***
  Item3   0.7401      0.6907    
  Item4   3.4110      0.1817    
  Item5   0.6860      0.7096    
  Item6   0.1072      0.9478    
  Item7   7.2092      0.0272 *  
  Item8   4.9704      0.0833 .  
  Item9   0.4278      0.8074    
  Item10  1.3567      0.5075    
  Item11  1.0111      0.6032    
  Item12  1.0835      0.5817    
  Item13  3.2220      0.1997    
  Item14  2.3760      0.3048    
  Item15  1.4200      0.4916    
  Item16  0.8831      0.6430    
  Item17  3.1335      0.2087    
  Item18  1.3752      0.5028    
  Item19  5.0045      0.0819 .  
  Item20  3.7580      0.1527

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 5.9915 (significance level: 0.05)

  Items detected as DIF items:
   Item1
   Item2
   Item7

testing paper code - R Journal 2020 - generated data

Code
  head(df[, c(1:5, 16)])
Output
    Item1 Item2 Item3 Item4 Item5 group
  1     0     1     1     1     1     0
  2     0     1     1     0     1     0
  3     0     1     0     0     1     0
  4     1     1     1     0     1     0
  5     1     1     0     1     1     0
  6     0     1     0     0     1     0
Code
  (fit1 <- difNLR(DataDIF, groupDIF, focal.name = 1, model = "4PL", type = "all"))
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 4PL model

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1   6.2044      0.1844    
  Item2   0.2802      0.9911    
  Item3   2.7038      0.6086    
  Item4   5.8271      0.2124    
  Item5  48.0052      0.0000 ***
  Item6   7.2060      0.1254    
  Item7   3.2390      0.5187    
  Item8  16.8991      0.0020 ** 
  Item9   2.1595      0.7064    
  Item10  4.6866      0.3210    
  Item11 69.5328      0.0000 ***
  Item12  8.1931      0.0848 .  
  Item13  2.5850      0.6295    
  Item14  2.9478      0.5666    
  Item15 20.6589      0.0004 ***

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 9.4877 (significance level: 0.05)

  Items detected as DIF items:
   Item5
   Item8
   Item11
   Item15
Code
  round(coef(fit1, simplify = TRUE), 3)
Output
                       a      b      c     d   aDif   bDif   cDif   dDif
  Item1 estimate   1.484  1.294  0.049 1.000  0.000  0.000  0.000  0.000
  Item1 CI2.5      0.730  0.726 -0.022 0.633  0.000  0.000  0.000  0.000
  Item1 CI97.5     2.237  1.861  0.119 1.367  0.000  0.000  0.000  0.000
  Item2 estimate   1.176  0.153  0.000 1.000  0.000  0.000  0.000  0.000
  Item2 CI2.5      0.417 -0.279 -0.242 0.751  0.000  0.000  0.000  0.000
  Item2 CI97.5     1.936  0.584  0.242 1.249  0.000  0.000  0.000  0.000
  Item3 estimate   1.281  1.766  0.001 1.000  0.000  0.000  0.000  0.000
  Item3 CI2.5      0.548  0.773 -0.063 0.381  0.000  0.000  0.000  0.000
  Item3 CI97.5     2.014  2.758  0.065 1.619  0.000  0.000  0.000  0.000
  Item4 estimate   1.450  0.421  0.000 1.000  0.000  0.000  0.000  0.000
  Item4 CI2.5      0.785  0.122 -0.128 0.802  0.000  0.000  0.000  0.000
  Item4 CI97.5     2.115  0.719  0.128 1.198  0.000  0.000  0.000  0.000
  Item5 estimate   1.965 -1.147  0.000 0.868 -0.408  0.769  0.023 -0.006
  Item5 CI2.5      0.310 -1.939 -0.602 0.780 -2.455 -0.177 -0.654 -0.188
  Item5 CI97.5     3.619 -0.356  0.602 0.955  1.640  1.715  0.699  0.177
  Item6 estimate   1.458 -0.527  0.000 0.954  0.000  0.000  0.000  0.000
  Item6 CI2.5      0.670 -0.953 -0.288 0.837  0.000  0.000  0.000  0.000
  Item6 CI97.5     2.246 -0.101  0.288 1.071  0.000  0.000  0.000  0.000
  Item7 estimate   0.888  1.392  0.000 1.000  0.000  0.000  0.000  0.000
  Item7 CI2.5     -0.076 -0.526 -0.209 0.059  0.000  0.000  0.000  0.000
  Item7 CI97.5     1.852  3.311  0.209 1.941  0.000  0.000  0.000  0.000
  Item8 estimate   1.162  1.407  0.000 0.866 -0.117  0.974  0.007  0.134
  Item8 CI2.5     -0.004 -0.078 -0.139 0.109 -1.975 -3.428 -0.173 -2.270
  Item8 CI97.5     2.329  2.892  0.139 1.622  1.741  5.375  0.186  2.539
  Item9 estimate   1.482 -1.337  0.000 0.928  0.000  0.000  0.000  0.000
  Item9 CI2.5      0.426 -2.385 -0.705 0.850  0.000  0.000  0.000  0.000
  Item9 CI97.5     2.538 -0.290  0.705 1.005  0.000  0.000  0.000  0.000
  Item10 estimate  1.375 -0.570  0.007 0.967  0.000  0.000  0.000  0.000
  Item10 CI2.5     0.572 -1.070 -0.323 0.841  0.000  0.000  0.000  0.000
  Item10 CI97.5    2.178 -0.069  0.338 1.093  0.000  0.000  0.000  0.000
  Item11 estimate  1.071 -1.027  0.000 0.969  1.173 -0.499  0.000  0.011
  Item11 CI2.5    -0.199 -2.862 -1.022 0.763 -0.948 -2.500 -1.293 -0.204
  Item11 CI97.5    2.341  0.808  1.022 1.175  3.294  1.502  1.293  0.225
  Item12 estimate  1.051  1.560  0.080 1.000  0.000  0.000  0.000  0.000
  Item12 CI2.5     0.035 -0.162 -0.056 0.141  0.000  0.000  0.000  0.000
  Item12 CI97.5    2.066  3.283  0.215 1.859  0.000  0.000  0.000  0.000
  Item13 estimate  1.009  1.348  0.084 1.000  0.000  0.000  0.000  0.000
  Item13 CI2.5    -0.013 -0.253 -0.084 0.217  0.000  0.000  0.000  0.000
  Item13 CI97.5    2.030  2.949  0.253 1.783  0.000  0.000  0.000  0.000
  Item14 estimate  1.093  1.659  0.141 1.000  0.000  0.000  0.000  0.000
  Item14 CI2.5    -0.065 -0.300  0.016 0.064  0.000  0.000  0.000  0.000
  Item14 CI97.5    2.252  3.618  0.266 1.936  0.000  0.000  0.000  0.000
  Item15 estimate  0.875 -0.565  0.000 0.945  0.205  0.348  0.000 -0.142
  Item15 CI2.5    -0.789 -2.871 -1.192 0.460 -2.042 -2.203 -1.312 -0.739
  Item15 CI97.5    2.539  1.740  1.192 1.429  2.452  2.900  1.312  0.454
Code
  round(coef(fit1, SE = TRUE)[[5]], 3)
Output
               a      b   aDif   bDif      c   cDif     d   dDif
  estimate 1.965 -1.147 -0.408  0.769  0.000  0.023 0.868 -0.006
  SE       0.844  0.404  1.045  0.483  0.307  0.345 0.044  0.093
  CI2.5    0.310 -1.939 -2.455 -0.177 -0.602 -0.654 0.780 -0.188
  CI97.5   3.619 -0.356  1.640  1.715  0.602  0.699 0.955  0.177
Code
  (fit2 <- difNLR(DataDIF, groupDIF, focal.name = 1, model = model, type = "all"))
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1   3.7724      0.0521 .  
  Item2   0.2487      0.8831    
  Item3   2.0373      0.3611    
  Item4   5.8151      0.1210    
  Item5  46.2121      0.0000 ***
  Item6   6.9990      0.0719 .  
  Item7   3.2390      0.3562    
  Item8  16.8991      0.0020 ** 
  Item9   2.1595      0.7064    
  Item10  4.6866      0.3210    
  Item11 69.5328      0.0000 ***
  Item12  8.1931      0.0848 .  
  Item13  2.5850      0.6295    
  Item14  2.9478      0.5666    
  Item15 20.6589      0.0004 ***

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


  Items detected as DIF items:
   Item5
   Item8
   Item11
   Item15
Code
  (fit3 <- difNLR(DataDIF, groupDIF, focal.name = 1, model = model, type = type))
Output
  Detection of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value   
  Item1   3.7724      0.0521 . 
  Item2   0.2487      0.8831   
  Item3   2.0373      0.3611   
  Item4   5.8151      0.1210   
  Item5  10.0923      0.0015 **
  Item6   6.9990      0.0719 . 
  Item7   3.2390      0.3562   
  Item8   0.0681      0.7941   
  Item9   2.1595      0.7064   
  Item10  4.6866      0.3210   
  Item11  0.0000      1.0000   
  Item12  8.1931      0.0848 . 
  Item13  2.5850      0.6295   
  Item14  2.9478      0.5666   
  Item15  0.3552      0.5512

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


  Items detected as DIF items:
   Item5
Code
  (fit4 <- difNLR(DataDIF, groupDIF, focal.name = 1, model = model, constraints = constraints,
    type = type))
Output
  Detection of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1   3.7724      0.0521 .  
  Item2   0.2487      0.8831    
  Item3   2.0373      0.3611    
  Item4   5.8151      0.1210    
  Item5  46.1905      0.0000 ***
  Item6   6.9990      0.0719 .  
  Item7   3.2390      0.3562    
  Item8  11.6006      0.0007 ***
  Item9   2.1595      0.7064    
  Item10  4.6866      0.3210    
  Item11 35.2213      0.0000 ***
  Item12  8.1931      0.0848 .  
  Item13  2.5850      0.6295    
  Item14  2.9478      0.5666    
  Item15 17.7716      0.0000 ***

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


  Items detected as DIF items:
   Item5
   Item8
   Item11
   Item15
Code
  (df <- data.frame(AIC = c(AIC(fit2), AIC(fit3), AIC(fit4)), BIC = c(BIC(fit2),
  BIC(fit3), BIC(fit4)), Fit = paste("fit", rep(2:4, each = 15), sep = ""), Item = as.factor(
    rep(1:15, 3))))
Output
           AIC       BIC  Fit Item
  1   903.5972  913.4127 fit2    1
  2  1183.4245 1193.2400 fit2    2
  3   557.5339  567.3495 fit2    3
  4  1054.5443 1069.2676 fit2    4
  5  1169.9188 1199.3653 fit2    5
  6  1138.6881 1153.4114 fit2    6
  7  1035.9053 1050.6286 fit2    7
  8   641.3773  680.6393 fit2    8
  9  1004.7217 1024.3527 fit2    9
  10 1143.9437 1163.5747 fit2   10
  11  860.0053  899.2674 fit2   11
  12 1096.9640 1116.5950 fit2   12
  13 1172.5120 1192.1430 fit2   13
  14 1190.0824 1209.7134 fit2   14
  15 1311.7767 1351.0387 fit2   15
  16  903.5972  913.4127 fit3    1
  17 1183.4245 1193.2400 fit3    2
  18  557.5339  567.3495 fit3    3
  19 1054.5443 1069.2676 fit3    4
  20 1169.9188 1199.3653 fit3    5
  21 1138.6881 1153.4114 fit3    6
  22 1035.9053 1050.6286 fit3    7
  23  639.4454  673.7997 fit3    8
  24 1004.7217 1024.3527 fit3    9
  25 1143.9437 1163.5747 fit3   10
  26  858.0053  892.3596 fit3   11
  27 1096.9640 1116.5950 fit3   12
  28 1172.5120 1192.1430 fit3   13
  29 1190.0824 1209.7134 fit3   14
  30 1310.1319 1344.4861 fit3   15
  31  903.5972  913.4127 fit4    1
  32 1183.4245 1193.2400 fit4    2
  33  557.5339  567.3495 fit4    3
  34 1054.5443 1069.2676 fit4    4
  35 1165.9404 1185.5715 fit4    5
  36 1138.6881 1153.4114 fit4    6
  37 1035.9053 1050.6286 fit4    7
  38  640.6757  665.2145 fit4    8
  39 1004.7217 1024.3527 fit4    9
  40 1143.9437 1163.5747 fit4   10
  41  888.3168  912.8556 fit4   11
  42 1096.9640 1116.5950 fit4   12
  43 1172.5120 1192.1430 fit4   13
  44 1190.0824 1209.7134 fit4   14
  45 1308.6640 1333.2028 fit4   15
Code
  logLik(fit3, item = 8)
Output
  'log Lik.' -312.7227 (df=7)
Code
  logLik(fit4, item = 8)
Output
  'log Lik.' -315.3379 (df=5)
Code
  predict(fit1, item = 5, group = c(0, 1), match = 0)
Output
     item match group      prob
  1 Item5     0     0 0.7851726
  2 Item5     0     1 0.5624891
Code
  fit9$difPur
Output
        Item1 Item2 Item3 Item4 Item5 Item6
  Step0     0     0     0     0     1     1
  Step1     0     0     0     0     1     0
  Step2     0     0     0     0     1     0
Code
  fit14$difPur
Output
         Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item11
  Step0      0     0     0     0     1     0     0     1     0      0      1
  Step1      1     0     0     0     1     0     0     1     0      0      1
  Step2      0     0     0     0     1     0     0     1     0      0      1
  Step3      1     0     0     0     1     0     0     1     0      0      1
  Step4      0     0     0     0     1     0     0     1     0      0      1
  Step5      1     0     0     0     1     0     0     1     0      0      1
  Step6      0     0     0     0     1     0     0     1     0      0      1
  Step7      1     0     0     0     1     0     0     1     0      0      1
  Step8      0     0     0     0     1     0     0     1     0      0      1
  Step9      1     0     0     0     1     0     0     1     0      0      1
  Step10     0     0     0     0     1     0     0     1     0      0      1
         Item12
  Step0       0
  Step1       0
  Step2       0
  Step3       0
  Step4       0
  Step5       0
  Step6       0
  Step7       0
  Step8       0
  Step9       0
  Step10      0
Code
  predict(fitex3, match = rep(c(-1, 0, 1), 2), group = rep(c(0, 1), each = 3),
  item = 1, interval = "confidence")
Output
        item match group      prob  lwr.conf  upr.conf
  1 Item6A_9    -1     0 0.6785773 0.6188773 0.7382773
  2 Item6A_9     0     0 0.7773050 0.7269066 0.8277034
  3 Item6A_9     1     0 0.8781427 0.8114574 0.9448281
  4 Item6A_9    -1     1 0.7802954 0.7186997 0.8418912
  5 Item6A_9     0     1 0.8431037 0.7869870 0.8992204
  6 Item6A_9     1     1 0.9290799 0.8549497 1.0032100

testing paper code - R Journal 2020 - special cases (not included)

Code
  head(df[, c(1:5, 16)])
Output
    Item1 Item2 Item3 Item4 Item5 group
  1     0     1     1     1     1     0
  2     0     1     1     0     1     0
  3     0     1     0     0     1     0
  4     1     1     1     0     1     0
  5     1     1     0     1     1     0
  6     0     1     0     0     1     0
Code
  coef(fit12b, item = 14)
Output
  $Item14
                   a        b          c  d
  estimate 0.9294854 1.329411 0.06799893  1
  CI2.5           NA       NA         NA NA
  CI97.5          NA       NA         NA NA
Code
  fit12c
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression Wald test statistics
  based on 4PL model

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value     
  Item1   43.3878      0.0000 ***
  Item2  155.8403      0.0000 ***
  Item3  153.4009      0.0000 ***
  Item4  111.2974      0.0000 ***
  Item5  533.3646      0.0000 ***
  Item6  107.9470      0.0000 ***
  Item7   11.5948      0.0206 *  
  Item8   53.3736      0.0000 ***
  Item9  453.2297      0.0000 ***
  Item10 145.8386      0.0000 ***
  Item11 910.1895      0.0000 ***
  Item12  68.7672      0.0000 ***
  Item13  28.3833      0.0000 ***
  Item14       NA          NA    
  Item15  96.6385      0.0000 ***

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 9.4877 (significance level: 0.05)

  Items detected as DIF items:
   Item1
   Item2
   Item3
   Item4
   Item5
   Item6
   Item7
   Item8
   Item9
   Item10
   Item11
   Item12
   Item13
   Item15
Code
  fit12d
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 4PL model

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value    
  Item1   2.0935      0.7186    
  Item2   0.7896      0.9398    
  Item3  17.6515      0.0014 ** 
  Item4   4.8403      0.3041    
  Item5  13.1573      0.0105 *  
  Item6   3.8714      0.4237    
  Item7   1.5778      0.8128    
  Item8  10.9093      0.0276 *  
  Item9   0.6097      0.9620    
  Item10  2.4853      0.6473    
  Item11 26.6071      0.0000 ***
  Item12  5.2838      0.2594    
  Item13  2.8016      0.5916    
  Item14      NA          NA    
  Item15 12.8104      0.0122 *

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 9.4877 (significance level: 0.05)

  Items detected as DIF items:
   Item3
   Item5
   Item8
   Item11
   Item15
Code
  (fit15a <- difNLR(DataDIF[, -c(5, 8, 11, 15)], groupDIF, focal.name = 1, model = "4PL",
  type = "all"))
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 4PL model

  Parameters were estimated using non-linear least squares

  Item purification was not applied
  No p-value adjustment for multiple comparisons

         Chisq-value P-value  
  Item1  9.1344      0.0578  .
  Item2  1.1944      0.8790   
  Item3  4.5018      0.3423   
  Item4  2.9407      0.5678   
  Item6  6.2007      0.1847   
  Item7  0.8918      0.9257   
  Item9  1.2215      0.8746   
  Item10 1.6226      0.8047   
  Item12 7.2585      0.1228   
  Item13 5.6248      0.2290   
  Item14 1.5104      0.8248

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 9.4877 (significance level: 0.05)
  None of items is detected as DIF
Code
  (fit15b <- difNLR(DataDIF[, -c(5, 8, 11, 15)], groupDIF, focal.name = 1, model = "4PL",
  type = "all", purify = TRUE))
Output
  Detection of all types of differential item functioning
  using the generalized logistic regression model

  Generalized logistic regression likelihood ratio chi-square statistics
  based on 4PL model

  Parameters were estimated using non-linear least squares

  Item purification was applied with 0 iteration.
  No p-value adjustment for multiple comparisons

         Chisq-value P-value  
  Item1  9.1344      0.0578  .
  Item2  1.1944      0.8790   
  Item3  4.5018      0.3423   
  Item4  2.9407      0.5678   
  Item6  6.2007      0.1847   
  Item7  0.8918      0.9257   
  Item9  1.2215      0.8746   
  Item10 1.6226      0.8047   
  Item12 7.2585      0.1228   
  Item13 5.6248      0.2290   
  Item14 1.5104      0.8248

  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

  Detection thresholds: 9.4877 (significance level: 0.05)
  None of items is detected as DIF


drabinova/difNLR documentation built on June 12, 2025, 4:47 a.m.