library(pander)
library(ggplot2)
library(coefplot)
library(ggthemes)
library(dplyr)
library(coefplot)
factored_df<-readRDS("data/engineered-features.rds")
# Make the Attrition Variable numeric so that we can do a model on it
factored_df$StandardHours<-NULL
factored_df$Over18<-NULL
factored_df$EmployeeNumber<-NULL
test_df <- factored_df %>%
mutate(
Age = NULL,
DailyRate= NULL,
Department=NULL,
DistanceFromHome=NULL,
Education= NULL,
# EducationField=NULL,
Gender= NULL,
JobRole=NULL,
HourlyRate= NULL,
MaritalStatus= NULL,
MonthlyRate= NULL,
MonthlyIncome= NULL,
NumCompaniesWorked=NULL,
PercentSalaryHike= NULL,
PerformanceRating= NULL,
TotalWorkingYears=NULL,
TrainingTimesLastYear=NULL,
YearsAtCompany=NULL,
YearsInCurrentRole=NULL,
YearsWithCurrManager=NULL,
YearsSinceLastPromotion=NULL
);
# shot_inDark <- function(x){
# if(x==0) x <- x+1;
#
# return (log10(x))
# }
#
#
# factored_df <- factored_df %>%
# mutate_if(is.numeric , shot_inDark)
equ <-Attrition~.
model1<-lm(equ,data=factored_df)
pander(summary(model1))
coefplot(model1, intercept=FALSE,vertical=FALSE)
# coefplot(model1, intercept=FALSE,vertical=FALSE)+theme_few()
model2<-lm(equ,data=test_df)
pander(summary(model2))
# coefplot(model2, intercept=FALSE,vertical=FALSE)+theme_few()
#
#
# Training_cor <- factored_df;
#
# Training_cor <- Training_cor %>%
# mutate(
# Attrition=factor(Attrition,labels = c("No", "Yes"))
# )
#
# for(i in 1:ncol(Training_cor)){
#
# Training_cor[,i]<- as.integer(Training_cor[,i])
# }
#
# corrplot(cor(Training_cor))
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.