LPGM.ord | Structure learning with Poisson models using the Or-LPGM... |
nbinom.Simdata | Generate negatibe binomial (NB) data |
nb.loglik | Log-likelihood of the negative binomial model Given a vector... |
nb.loglik.dispersion | Log-likelihood of negative binomial model, for a fixed... |
nb.loglik.regression | log-likelihood of the NB regression model |
nb.loglik.regression.gradient | Gradient of the log-likelihood of the NB regression model |
nb.OptimizeDispersion | (NB) model. The NB distribution is parametrized by two... |
nb.regression.parseModel | Parse ZINB regression model |
nbscale.noT | Structure learning with negative binomial model using optim |
nb.wald | Structure learning with negative binomial model using glm |
PCzinb | Structure learning for count data |
Poisk2 | Structure learning with Poisson models using the Poisson K2... |
pois.ord | Structure learning with Poisson models using the Or-PPGM... |
pois.simdata | Generate Poisson data |
pois.wald | Structure learning with Poisson models |
prediction_scores | Prediction scores for estimated graph |
QPtransform | Quantile matching and power transformation |
simdata | Generate Poisson, negative binomial (NB), and zero-inflated... |
zinb0.noT | Structure learning with zero-inflated negative binomial model... |
zinb1.noT | Structure learning with zero-inflated negative binomial model |
zinbOptimizeDispersion | (ZINB) model. The ZINB distribution is parametrized by three... |
zinb.regression.parseModel | Parse ZINB regression model |
zinb.simdata | Generate zero-inflated negative binomial data |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.