| init_params_lm_hs | R Documentation |
Initialize the parameters for a linear regression model assuming a
horseshoe prior for the (non-intercept) coefficients. The number of predictors
p may exceed the number of observations n.
init_params_lm_hs(y, X)
y |
|
X |
|
a named list params containing
mu n x 1 vector of conditional means (fitted values)
sigma the conditional standard deviation
coefficients a named list of parameters that determine mu
The parameters in coefficients are:
beta: the p x 1 vector of regression coefficients
sigma_beta: the p x 1 vector of regression coefficient standard deviations
(local scale parameters)
xi_sigma_beta: the p x 1 vector of parameter-expansion variables for sigma_beta
lambda_beta: the global scale parameter
xi_lambda_beta: the parameter-expansion variable for lambda_beta
components of beta
# Simulate data for illustration:
sim_dat = simulate_nb_lm(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X
# Initialize:
params = init_params_lm_hs(y = y, X = X)
names(params)
names(params$coefficients)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.