R/BluegillWs.R

#' @title Length-weight regression results for computing Ws for Bluegill.
#' 
#' @description Length-weight regression results from a variety of populations used for computing the standard weight (Ws) equation for Bluegill (\emph{Lepomis macrochirus}).
#' 
#' @details Each row contains the intercept (\code{log.a}) and slope (\code{b}) results from fitting the \eqn{log_{10}(W) = log_{10}(a) + b log_{10}(L)} linear regression model to a population of \code{n} fish from the given location and state. Note that \eqn{W} is weight in grams and \eqn{L} is length in mm.
#' 
#' @name BluegillWs
#' 
#' @docType data
#' 
#' @format A data frame with 27 observations on the following 5 variables:
#'  \describe{ 
#'    \item{site}{Location of sample.}
#'    \item{state}{State where location is located.}
#'    \item{n}{Sample size in regression.}
#'    \item{log.a}{Intercept of regression.}
#'    \item{b}{Slope of regression.} 
#'  }
#'  
#' @seealso \code{WSlit}, \code{WSval} and \code{rlp} in \pkg{FSA}.
#' 
#' @source From Table 2 in Murphy, B.R., M.L. Brown, and T.A. Springer. 1990. Evaluation of the relative weight (Wr) index, with new applications to walleye. North American Journal of Fisheries Management, 10:85-97.
#' 
#' @keywords datasets
#' 
#' @examples
#' str(BluegillWs)
#' head(BluegillWs)
#' 
#' ## Recreate Murphy et al. (1990) results for bluegills
#' bg.rlp <- rlp(BluegillWs$log.a,BluegillWs$b,75,395,qtype=6)
#' coef(bg.rlp)
#' # compare to log.a=-5.385 and b=3.318
#' 
NULL
droglenc/FSAWs documentation built on Feb. 3, 2023, 8:48 a.m.