knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" ) pkgload::load_all() set.seed(20230702) clean_output <- function(x, options) { x <- gsub("0x[0-9a-f]+", "0xdeadbeef", x) x <- gsub("dataframe_[0-9]*_[0-9]*", " dataframe_42_42 ", x) x <- gsub("[0-9]*\\.___row_number ASC", "42.___row_number ASC", x) index <- x index <- gsub("─", "-", index) index <- strsplit(paste(index, collapse = "\n"), "\n---\n")[[1]][[2]] writeLines(index, "index.md") x <- fansi::strip_sgr(x) x } options(cli.num_colors = 256) local({ hook_source <- knitr::knit_hooks$get("document") knitr::knit_hooks$set(document = clean_output) }) Sys.setenv(DUCKPLYR_OUTPUT_ORDER = TRUE)
The goal of the duckplyr R package is to provide a drop-in replacement for dplyr that uses DuckDB as a backend for fast operation. DuckDB is an in-process OLAP database management system, dplyr is the grammar of data manipulation in the tidyverse.
duckplyr also defines a set of generics that provide a low-level implementer's interface for dplyr's high-level user interface.
Install duckplyr from CRAN with:
install.packages("duckplyr")
You can also install the development version of duckplyr from R-universe:
install.packages("duckplyr", repos = c("https://tidyverse.r-universe.dev", "https://cloud.r-project.org"))
Or from GitHub with:
# install.packages("pak", repos = sprintf("https://r-lib.github.io/p/pak/stable/%s/%s/%s", .Platform$pkgType, R.Version()$os, R.Version()$arch)) pak::pak("tidyverse/duckplyr")
library(conflicted) library(dplyr) conflict_prefer("filter", "dplyr")
There are two ways to use duckplyr.
duckplyr::as_duckplyr_tibble()
as the first step in your pipe, without attaching the package.library(duckplyr)
, it overwrites dplyr methods and is automatically enabled for the entire session without having to call as_duckplyr_tibble()
. To turn this off, call methods_restore()
.The examples below illustrate both methods. See also the companion demo repository for a use case with a large dataset.
This example illustrates usage of duckplyr for individual data frames.
Use duckplyr::as_duckplyr_tibble()
to enable processing with duckdb:
out <- palmerpenguins::penguins %>% # CAVEAT: factor columns are not supported yet mutate(across(where(is.factor), as.character)) %>% duckplyr::as_duckplyr_tibble() %>% mutate(bill_area = bill_length_mm * bill_depth_mm) %>% summarize(.by = c(species, sex), mean_bill_area = mean(bill_area)) %>% filter(species != "Gentoo")
The result is a tibble, with its own class.
class(out) names(out)
duckdb is responsible for eventually carrying out the operations. Despite the late filter, the summary is not computed for the Gentoo species.
out %>% explain()
All data frame operations are supported. Computation happens upon the first request.
out$mean_bill_area
After the computation has been carried out, the results are available immediately:
out
This example illustrates usage of duckplyr for all data frames in the R session.
Use library(duckplyr)
or duckplyr::methods_overwrite()
to overwrite dplyr methods and enable processing with duckdb for all data frames:
duckplyr::methods_overwrite()
This is the same query as above, without as_duckplyr_tibble()
:
Sys.setenv(DUCKPLYR_FALLBACK_COLLECT = 0)
out <- palmerpenguins::penguins %>% # CAVEAT: factor columns are not supported yet mutate(across(where(is.factor), as.character)) %>% mutate(bill_area = bill_length_mm * bill_depth_mm) %>% summarize(.by = c(species, sex), mean_bill_area = mean(bill_area)) %>% filter(species != "Gentoo")
The result is a plain tibble now:
class(out)
Querying the number of rows also starts the computation:
nrow(out)
Restart R, or call duckplyr::methods_restore()
to revert to the default dplyr implementation.
duckplyr::methods_restore()
dplyr is active again:
palmerpenguins::penguins %>% # CAVEAT: factor columns are not supported yet mutate(across(where(is.factor), as.character)) %>% mutate(bill_area = bill_length_mm * bill_depth_mm) %>% summarize(.by = c(species, sex), mean_bill_area = mean(bill_area)) %>% filter(species != "Gentoo")
We would like to guide our efforts towards improving duckplyr, focusing on the features with the most impact. To this end, duckplyr collects and uploads telemetry data, but only if permitted by the user:
The data collected contains:
The first time the package encounters an unsupported function, data type, or operation, instructions are printed to the console.
Sys.setenv(DUCKPLYR_FALLBACK_COLLECT = "")
palmerpenguins::penguins %>% duckplyr::as_duckplyr_tibble() %>% transmute(bill_area = bill_length_mm * bill_depth_mm) %>% head(3)
The duckplyr package is a dplyr backend that uses DuckDB, a high-performance, embeddable OLAP database. It is designed to be a fully compatible drop-in replacement for dplyr, with exactly the same syntax and semantics:
The dbplyr package is a dplyr backend that connects to SQL databases, and is designed to work with various databases that support SQL, including DuckDB. Data must be copied into and collected from the database, and the syntax and semantics are similar but not identical to plain dplyr.
This package also provides generics, for which other packages may then implement methods.
library(duckplyr)
methods_overwrite()
# Create a relational to be used by examples below new_dfrel <- function(x) { stopifnot(is.data.frame(x)) new_relational(list(x), class = "dfrel") } mtcars_rel <- new_dfrel(mtcars[1:5, 1:4]) # Example 1: return a data.frame rel_to_df.dfrel <- function(rel, ...) { unclass(rel)[[1]] } rel_to_df(mtcars_rel) # Example 2: A (random) filter rel_filter.dfrel <- function(rel, exprs, ...) { df <- unclass(rel)[[1]] # A real implementation would evaluate the predicates defined # by the exprs argument new_dfrel(df[sample.int(nrow(df), 3, replace = TRUE), ]) } rel_filter( mtcars_rel, list( relexpr_function( "gt", list(relexpr_reference("cyl"), relexpr_constant("6")) ) ) ) # Example 3: A custom projection rel_project.dfrel <- function(rel, exprs, ...) { df <- unclass(rel)[[1]] # A real implementation would evaluate the expressions defined # by the exprs argument new_dfrel(df[seq_len(min(3, ncol(df)))]) } rel_project( mtcars_rel, list(relexpr_reference("cyl"), relexpr_reference("disp")) ) # Example 4: A custom ordering (eg, ascending by mpg) rel_order.dfrel <- function(rel, exprs, ...) { df <- unclass(rel)[[1]] # A real implementation would evaluate the expressions defined # by the exprs argument new_dfrel(df[order(df[[1]]), ]) } rel_order( mtcars_rel, list(relexpr_reference("mpg")) ) # Example 5: A custom join rel_join.dfrel <- function(left, right, conds, join, ...) { left_df <- unclass(left)[[1]] right_df <- unclass(right)[[1]] # A real implementation would evaluate the expressions # defined by the conds argument, # use different join types based on the join argument, # and implement the join itself instead of relaying to left_join(). new_dfrel(dplyr::left_join(left_df, right_df)) } rel_join(new_dfrel(data.frame(mpg = 21)), mtcars_rel) # Example 6: Limit the maximum rows returned rel_limit.dfrel <- function(rel, n, ...) { df <- unclass(rel)[[1]] new_dfrel(df[seq_len(n), ]) } rel_limit(mtcars_rel, 3) # Example 7: Suppress duplicate rows # (ignoring row names) rel_distinct.dfrel <- function(rel, ...) { df <- unclass(rel)[[1]] new_dfrel(df[!duplicated(df), ]) } rel_distinct(new_dfrel(mtcars[1:3, 1:4])) # Example 8: Return column names rel_names.dfrel <- function(rel, ...) { df <- unclass(rel)[[1]] names(df) } rel_names(mtcars_rel)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.