The goal of the duckplyr R package is to provide a drop-in replacement for dplyr that uses DuckDB as a backend for fast operation. DuckDB is an in-process OLAP database management system, dplyr is the grammar of data manipulation in the tidyverse.
duckplyr also defines a set of generics that provide a low-level implementer's interface for dplyr's high-level user interface.
Install duckplyr from CRAN with:
install.packages("duckplyr")
You can also install the development version of duckplyr from R-universe:
install.packages("duckplyr", repos = c("https://tidyverse.r-universe.dev", "https://cloud.r-project.org"))
Or from GitHub with:
# install.packages("pak", repos = sprintf("https://r-lib.github.io/p/pak/stable/%s/%s/%s", .Platform$pkgType, R.Version()$os, R.Version()$arch))
pak::pak("tidyverse/duckplyr")
library(conflicted)
library(dplyr)
conflict_prefer("filter", "dplyr")
#> [1m[22m[90m[conflicted][39m Will prefer [1m[34mdplyr[39m[22m::filter over any
#> other package.
There are two ways to use duckplyr.
duckplyr::as_duckplyr_tibble()
as the first step in your pipe, without attaching the package.library(duckplyr)
, it overwrites dplyr methods and is automatically enabled for the entire session without having to call as_duckplyr_tibble()
. To turn this off, call methods_restore()
.The examples below illustrate both methods. See also the companion demo repository for a use case with a large dataset.
This example illustrates usage of duckplyr for individual data frames.
Use duckplyr::as_duckplyr_tibble()
to enable processing with duckdb:
out <-
palmerpenguins::penguins %>%
# CAVEAT: factor columns are not supported yet
mutate(across(where(is.factor), as.character)) %>%
duckplyr::as_duckplyr_tibble() %>%
mutate(bill_area = bill_length_mm * bill_depth_mm) %>%
summarize(.by = c(species, sex), mean_bill_area = mean(bill_area)) %>%
filter(species != "Gentoo")
The result is a tibble, with its own class.
class(out)
#> [1] "duckplyr_df" "tbl_df" "tbl" "data.frame"
names(out)
#> [1] "species" "sex" "mean_bill_area"
duckdb is responsible for eventually carrying out the operations. Despite the late filter, the summary is not computed for the Gentoo species.
out %>%
explain()
#> ┌---------------------------┐
#> │ ORDER_BY │
#> │ -------------------- │
#> │ dataframe_42_42 │
#> │ 42.___row_number ASC │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ FILTER │
#> │ -------------------- │
#> │ "r_base::!="(species, │
#> │ 'Gentoo') │
#> │ │
#> │ ~34 Rows │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ PROJECTION │
#> │ -------------------- │
#> │ #0 │
#> │ #1 │
#> │ #2 │
#> │ #3 │
#> │ │
#> │ ~172 Rows │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ STREAMING_WINDOW │
#> │ -------------------- │
#> │ Projections: │
#> │ ROW_NUMBER() OVER () │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ ORDER_BY │
#> │ -------------------- │
#> │ dataframe_42_42 │
#> │ 42.___row_number ASC │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ HASH_GROUP_BY │
#> │ -------------------- │
#> │ Groups: │
#> │ #0 │
#> │ #1 │
#> │ │
#> │ Aggregates: │
#> │ min(#2) │
#> │ mean(#3) │
#> │ │
#> │ ~172 Rows │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ PROJECTION │
#> │ -------------------- │
#> │ species │
#> │ sex │
#> │ ___row_number │
#> │ bill_area │
#> │ │
#> │ ~344 Rows │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ PROJECTION │
#> │ -------------------- │
#> │ #0 │
#> │ #1 │
#> │ #2 │
#> │ #3 │
#> │ │
#> │ ~344 Rows │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ STREAMING_WINDOW │
#> │ -------------------- │
#> │ Projections: │
#> │ ROW_NUMBER() OVER () │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ PROJECTION │
#> │ -------------------- │
#> │ species │
#> │ sex │
#> │ bill_area │
#> │ │
#> │ ~344 Rows │
#> └-------------┬-------------┘
#> ┌-------------┴-------------┐
#> │ R_DATAFRAME_SCAN │
#> │ -------------------- │
#> │ data.frame │
#> │ │
#> │ Projections: │
#> │ species │
#> │ bill_length_mm │
#> │ bill_depth_mm │
#> │ sex │
#> │ │
#> │ ~344 Rows │
#> └---------------------------┘
All data frame operations are supported. Computation happens upon the first request.
out$mean_bill_area
#> materializing:
#> ---------------------
#> --- Relation Tree ---
#> ---------------------
#> Projection [species as species, sex as sex, mean_bill_area as mean_bill_area]
#> Order [___row_number ASC]
#> Filter ["!="(species, 'Gentoo')]
#> Projection [species as species, sex as sex, mean_bill_area as mean_bill_area, row_number() OVER () as ___row_number]
#> Projection [species as species, sex as sex, mean_bill_area as mean_bill_area]
#> Order [___row_number ASC]
#> Aggregate [species, sex, min(___row_number), mean(bill_area)]
#> Projection [species as species, island as island, bill_length_mm as bill_length_mm, bill_depth_mm as bill_depth_mm, flipper_length_mm as flipper_length_mm, body_mass_g as body_mass_g, sex as sex, "year" as year, bill_area as bill_area, row_number() OVER () as ___row_number]
#> Projection [species as species, island as island, bill_length_mm as bill_length_mm, bill_depth_mm as bill_depth_mm, flipper_length_mm as flipper_length_mm, body_mass_g as body_mass_g, sex as sex, "year" as year, "*"(bill_length_mm, bill_depth_mm) as bill_area]
#> r_dataframe_scan(0xdeadbeef)
#>
#> ---------------------
#> -- Result Columns --
#> ---------------------
#> - species (VARCHAR)
#> - sex (VARCHAR)
#> - mean_bill_area (DOUBLE)
#>
#> [1] 770.2627 656.8523 694.9360 819.7503 984.2279
After the computation has been carried out, the results are available immediately:
out
#> [38;5;246m# A tibble: 5 × 3[39m
#> [1mspecies[22m [1msex[22m [1mmean_bill_area[22m
#> [3m[38;5;246m<chr>[39m[23m [3m[38;5;246m<chr>[39m[23m [3m[38;5;246m<dbl>[39m[23m
#> [38;5;250m1[39m Adelie male 770.
#> [38;5;250m2[39m Adelie female 657.
#> [38;5;250m3[39m Adelie [31mNA[39m 695.
#> [38;5;250m4[39m Chinstrap female 820.
#> [38;5;250m5[39m Chinstrap male 984.
This example illustrates usage of duckplyr for all data frames in the R session.
Use library(duckplyr)
or duckplyr::methods_overwrite()
to overwrite dplyr methods and enable processing with duckdb for all data frames:
duckplyr::methods_overwrite()
#> [1m[22m[32m✔[39m Overwriting [34mdplyr[39m methods with [34mduckplyr[39m methods.
#> [36mℹ[39m Turn off with `duckplyr::methods_restore()`.
This is the same query as above, without as_duckplyr_tibble()
:
out <-
palmerpenguins::penguins %>%
# CAVEAT: factor columns are not supported yet
mutate(across(where(is.factor), as.character)) %>%
mutate(bill_area = bill_length_mm * bill_depth_mm) %>%
summarize(.by = c(species, sex), mean_bill_area = mean(bill_area)) %>%
filter(species != "Gentoo")
The result is a plain tibble now:
class(out)
#> [1] "tbl_df" "tbl" "data.frame"
Querying the number of rows also starts the computation:
nrow(out)
#> materializing:
#> ---------------------
#> --- Relation Tree ---
#> ---------------------
#> Projection [species as species, sex as sex, mean_bill_area as mean_bill_area]
#> Order [___row_number ASC]
#> Filter ["!="(species, 'Gentoo')]
#> Projection [species as species, sex as sex, mean_bill_area as mean_bill_area, row_number() OVER () as ___row_number]
#> Projection [species as species, sex as sex, mean_bill_area as mean_bill_area]
#> Order [___row_number ASC]
#> Aggregate [species, sex, min(___row_number), mean(bill_area)]
#> Projection [species as species, island as island, bill_length_mm as bill_length_mm, bill_depth_mm as bill_depth_mm, flipper_length_mm as flipper_length_mm, body_mass_g as body_mass_g, sex as sex, "year" as year, bill_area as bill_area, row_number() OVER () as ___row_number]
#> Projection [species as species, island as island, bill_length_mm as bill_length_mm, bill_depth_mm as bill_depth_mm, flipper_length_mm as flipper_length_mm, body_mass_g as body_mass_g, sex as sex, "year" as year, "*"(bill_length_mm, bill_depth_mm) as bill_area]
#> r_dataframe_scan(0xdeadbeef)
#>
#> ---------------------
#> -- Result Columns --
#> ---------------------
#> - species (VARCHAR)
#> - sex (VARCHAR)
#> - mean_bill_area (DOUBLE)
#> [1] 5
Restart R, or call duckplyr::methods_restore()
to revert to the default dplyr implementation.
duckplyr::methods_restore()
#> [1m[22m[36mℹ[39m Restoring [34mdplyr[39m methods.
dplyr is active again:
palmerpenguins::penguins %>%
# CAVEAT: factor columns are not supported yet
mutate(across(where(is.factor), as.character)) %>%
mutate(bill_area = bill_length_mm * bill_depth_mm) %>%
summarize(.by = c(species, sex), mean_bill_area = mean(bill_area)) %>%
filter(species != "Gentoo")
#> [38;5;246m# A tibble: 5 × 3[39m
#> [1mspecies[22m [1msex[22m [1mmean_bill_area[22m
#> [3m[38;5;246m<chr>[39m[23m [3m[38;5;246m<chr>[39m[23m [3m[38;5;246m<dbl>[39m[23m
#> [38;5;250m1[39m Adelie male 770.
#> [38;5;250m2[39m Adelie female 657.
#> [38;5;250m3[39m Adelie [31mNA[39m [31mNA[39m
#> [38;5;250m4[39m Chinstrap female 820.
#> [38;5;250m5[39m Chinstrap male 984.
We would like to guide our efforts towards improving duckplyr, focusing on the features with the most impact. To this end, duckplyr collects and uploads telemetry data, but only if permitted by the user:
The data collected contains:
The first time the package encounters an unsupported function, data type, or operation, instructions are printed to the console.
palmerpenguins::penguins %>%
duckplyr::as_duckplyr_tibble() %>%
transmute(bill_area = bill_length_mm * bill_depth_mm) %>%
head(3)
#> [1m[22mThe [34mduckplyr[39m package is configured to fall back to [34mdplyr[39m when it encounters an
#> incompatibility. Fallback events can be collected and uploaded for analysis to
#> guide future development. By default, no data will be collected or uploaded.
#> [36mℹ[39m A fallback situation just occurred. The following information would have been
#> recorded:
#> {"version":"0.4.1","message":"Can't convert columns of class <factor> to
#> relational. Affected
#> column:\n`...1`.","name":"transmute","x":{"...1":"factor","...2":"factor","...3":"numeric","...4":"numeric","...5":"integer","...6":"integer","...7":"factor","...8":"integer"},"args":{"dots":{"...9":"...3
#> * ...4"}}}
#> → Run `duckplyr::fallback_sitrep()` to review the current settings.
#> → Run `Sys.setenv(DUCKPLYR_FALLBACK_COLLECT = 1)` to enable fallback logging,
#> and `Sys.setenv(DUCKPLYR_FALLBACK_VERBOSE = TRUE)` in addition to enable
#> printing of fallback situations to the console.
#> → Run `duckplyr::fallback_review()` to review the available reports, and
#> `duckplyr::fallback_upload()` to upload them.
#> [36mℹ[39m See `?duckplyr::fallback()` for details.
#> [36mℹ[39m [90mThis message will be displayed once every eight hours.[39m
#> materializing:
#> ---------------------
#> --- Relation Tree ---
#> ---------------------
#> Limit 3
#> r_dataframe_scan(0xdeadbeef)
#>
#> ---------------------
#> -- Result Columns --
#> ---------------------
#> - bill_area (DOUBLE)
#>
#> [38;5;246m# A tibble: 3 × 1[39m
#> [1mbill_area[22m
#> [3m[38;5;246m<dbl>[39m[23m
#> [38;5;250m1[39m 731.
#> [38;5;250m2[39m 687.
#> [38;5;250m3[39m 725.
The duckplyr package is a dplyr backend that uses DuckDB, a high-performance, embeddable OLAP database. It is designed to be a fully compatible drop-in replacement for dplyr, with exactly the same syntax and semantics:
The dbplyr package is a dplyr backend that connects to SQL databases, and is designed to work with various databases that support SQL, including DuckDB. Data must be copied into and collected from the database, and the syntax and semantics are similar but not identical to plain dplyr.
This package also provides generics, for which other packages may then implement methods.
library(duckplyr)
#> [1m[22m[32m✔[39m Overwriting [34mdplyr[39m methods with [34mduckplyr[39m methods.
#> [36mℹ[39m Turn off with `duckplyr::methods_restore()`.
# Create a relational to be used by examples below
new_dfrel <- function(x) {
stopifnot(is.data.frame(x))
new_relational(list(x), class = "dfrel")
}
mtcars_rel <- new_dfrel(mtcars[1:5, 1:4])
# Example 1: return a data.frame
rel_to_df.dfrel <- function(rel, ...) {
unclass(rel)[[1]]
}
rel_to_df(mtcars_rel)
#> mpg cyl disp hp
#> Mazda RX4 21.0 6 160 110
#> Mazda RX4 Wag 21.0 6 160 110
#> Datsun 710 22.8 4 108 93
#> Hornet 4 Drive 21.4 6 258 110
#> Hornet Sportabout 18.7 8 360 175
# Example 2: A (random) filter
rel_filter.dfrel <- function(rel, exprs, ...) {
df <- unclass(rel)[[1]]
# A real implementation would evaluate the predicates defined
# by the exprs argument
new_dfrel(df[sample.int(nrow(df), 3, replace = TRUE), ])
}
rel_filter(
mtcars_rel,
list(
relexpr_function(
"gt",
list(relexpr_reference("cyl"), relexpr_constant("6"))
)
)
)
#> [[1]]
#> mpg cyl disp hp
#> Mazda RX4 Wag 21.0 6 160 110
#> Mazda RX4 Wag.1 21.0 6 160 110
#> Datsun 710 22.8 4 108 93
#>
#> attr(,"class")
#> [1] "dfrel" "relational"
# Example 3: A custom projection
rel_project.dfrel <- function(rel, exprs, ...) {
df <- unclass(rel)[[1]]
# A real implementation would evaluate the expressions defined
# by the exprs argument
new_dfrel(df[seq_len(min(3, ncol(df)))])
}
rel_project(
mtcars_rel,
list(relexpr_reference("cyl"), relexpr_reference("disp"))
)
#> [[1]]
#> mpg cyl disp
#> Mazda RX4 21.0 6 160
#> Mazda RX4 Wag 21.0 6 160
#> Datsun 710 22.8 4 108
#> Hornet 4 Drive 21.4 6 258
#> Hornet Sportabout 18.7 8 360
#>
#> attr(,"class")
#> [1] "dfrel" "relational"
# Example 4: A custom ordering (eg, ascending by mpg)
rel_order.dfrel <- function(rel, exprs, ...) {
df <- unclass(rel)[[1]]
# A real implementation would evaluate the expressions defined
# by the exprs argument
new_dfrel(df[order(df[[1]]), ])
}
rel_order(
mtcars_rel,
list(relexpr_reference("mpg"))
)
#> [[1]]
#> mpg cyl disp hp
#> Hornet Sportabout 18.7 8 360 175
#> Mazda RX4 21.0 6 160 110
#> Mazda RX4 Wag 21.0 6 160 110
#> Hornet 4 Drive 21.4 6 258 110
#> Datsun 710 22.8 4 108 93
#>
#> attr(,"class")
#> [1] "dfrel" "relational"
# Example 5: A custom join
rel_join.dfrel <- function(left, right, conds, join, ...) {
left_df <- unclass(left)[[1]]
right_df <- unclass(right)[[1]]
# A real implementation would evaluate the expressions
# defined by the conds argument,
# use different join types based on the join argument,
# and implement the join itself instead of relaying to left_join().
new_dfrel(dplyr::left_join(left_df, right_df))
}
rel_join(new_dfrel(data.frame(mpg = 21)), mtcars_rel)
#> [1m[22mJoining with `by = join_by(mpg)`
#> Joining with `by = join_by(mpg)`
#> [[1]]
#> mpg cyl disp hp
#> 1 21 6 160 110
#> 2 21 6 160 110
#>
#> attr(,"class")
#> [1] "dfrel" "relational"
# Example 6: Limit the maximum rows returned
rel_limit.dfrel <- function(rel, n, ...) {
df <- unclass(rel)[[1]]
new_dfrel(df[seq_len(n), ])
}
rel_limit(mtcars_rel, 3)
#> [[1]]
#> mpg cyl disp hp
#> Mazda RX4 21.0 6 160 110
#> Mazda RX4 Wag 21.0 6 160 110
#> Datsun 710 22.8 4 108 93
#>
#> attr(,"class")
#> [1] "dfrel" "relational"
# Example 7: Suppress duplicate rows
# (ignoring row names)
rel_distinct.dfrel <- function(rel, ...) {
df <- unclass(rel)[[1]]
new_dfrel(df[!duplicated(df), ])
}
rel_distinct(new_dfrel(mtcars[1:3, 1:4]))
#> [[1]]
#> mpg cyl disp hp
#> Mazda RX4 21.0 6 160 110
#> Datsun 710 22.8 4 108 93
#>
#> attr(,"class")
#> [1] "dfrel" "relational"
# Example 8: Return column names
rel_names.dfrel <- function(rel, ...) {
df <- unclass(rel)[[1]]
names(df)
}
rel_names(mtcars_rel)
#> [1] "mpg" "cyl" "disp" "hp"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.