clean_output <- function(x, options) { x <- gsub("0x[0-9a-f]+", "0xdeadbeef", x) x <- gsub("dataframe_[0-9]*_[0-9]*", " dataframe_42_42 ", x) x <- gsub("[0-9]*\\.___row_number ASC", "42.___row_number ASC", x) x <- gsub("─", "-", x) x } local({ hook_source <- knitr::knit_hooks$get("document") knitr::knit_hooks$set(document = clean_output) }) knitr::opts_chunk$set( collapse = TRUE, eval = identical(Sys.getenv("IN_PKGDOWN"), "true") || (getRversion() >= "4.1" && rlang::is_installed(c("conflicted", "nycflights13", "lubridate"))), comment = "#>" ) Sys.setenv(DUCKPLYR_FALLBACK_COLLECT = 0)
This article describes the translations provided by duckplyr for different data types, verbs, and functions within verbs.
If a translation is not provided, duckplyr falls back to dplyr, see vignette("fallback")
for details.
library(conflicted) library(dplyr) conflict_prefer("filter", "dplyr") conflict_prefer("lag", "dplyr")
duckplyr supports the following data types:
is.logical()
is.integer()
is.numeric()
is.character()
is.Date()
is.POSIXct()
(with UTC time zone)is.difftime()
duckplyr::duckdb_tibble( logical = TRUE, integer = 1L, numeric = 1.1, character = "a", Date = as.Date("2025-01-11"), POSIXct = as.POSIXct("2025-01-11 19:23:00", tz = "UTC"), difftime = as.difftime(1, units = "secs"), ) |> compute()
Generally, zero-column tibbles are not supported by duckplyr, neither as input nor as a result.
duckplyr::duckdb_tibble() duckplyr::duckdb_tibble(a = 1, .prudence = "stingy") |> select(-a)
Support for more data types, and passthrough of unknown data types, is planned. Let's discuss any additional data types you would like to see supported.
Not all dplyr verbs are implemented within duckplyr.
For unsupported verbs, duckplyr automatically falls back to dplyr.
See ?unsupported
for a list of verbs for which duckplyr does not provide a method.
See the reference index for a list of verbs with corresponding duckplyr methods.
Let's discuss any additional verbs you would like to see supported.
For all functions used in dplyr verbs, translations must be provided. If an expression contains a function for which no translation is provided, duckplyr falls back to dplyr. With some exceptions, only positional matching is implemented.
As of now, here are the translations provided:
Implemented: (
.
Reference: ?Paren
.
duckplyr::duckdb_tibble(a = 1, b = 2, c = 3, .prudence = "stingy") |> mutate((a + b) * c)
Implemented: >
, >=
, <
, <=
, ==
, !=
.
Reference: ?Comparison
.
duckplyr::duckdb_tibble( a = c(1, 2, NA), b = c(2, NA, 3), c = c(NA, 3, 4), .prudence = "stingy" ) |> mutate(a > b, b != c, c < a, a >= b, b <= c)
Implemented: +
, -
, *
, /
.
Reference: ?Arithmetic
.
duckplyr::duckdb_tibble(a = 1, b = 2, c = 3, .prudence = "stingy") |> mutate(a + b, a / b, a - b, a * b)
Implemented: log()
, log10()
, abs()
.
Reference: ?Math
.
duckplyr::duckdb_tibble(a = 1, b = 2, c = -3, .prudence = "stingy") |> mutate(log10(a), log(b), abs(c))
Implemented: !
, &
, |
.
Reference: ?Logic
.
duckplyr::duckdb_tibble(a = FALSE, b = TRUE, c = NA, .prudence = "stingy") |> mutate(!a, a & b, b | c)
Implemented:
is.na()
, dplyr::if_else()
, as.integer()
strftime(x, format)
duckplyr::duckdb_tibble(a = 1, b = NA, .prudence = "stingy") |> mutate(is.na(b), if_else(is.na(b), 0, 1), as.integer(b)) duckplyr::duckdb_tibble( a = as.POSIXct("2025-01-11 19:23:46", tz = "UTC"), .prudence = "stingy") |> mutate(strftime(a, "%H:%M:%S"))
Implemented: grepl()
, substr()
, sub()
, gsub()
.
duckplyr::duckdb_tibble(a = "abbc", .prudence = "stingy") |> mutate(grepl("b", a), substr(a, 2L, 3L), sub("b", "B", a), gsub("b", "B", a))
Implemented: lubridate::hour()
, lubridate::minute()
, lubridate::second()
, lubridate::wday()
.
duckplyr::duckdb_tibble( a = as.POSIXct("2025-01-11 19:23:46", tz = "UTC"), .prudence = "stingy" ) |> mutate( hour = lubridate::hour(a), minute = lubridate::minute(a), second = lubridate::second(a), wday = lubridate::wday(a) )
Implemented:
sum(x, na.rm)
, dplyr::n()
, dplyr::n_distinct()
mean(x, na.rm)
, median(x, na.rm)
, sd(x, na.rm)
min()
, max()
, any()
, all()
duckplyr::duckdb_tibble(a = 1:3, b = c(1, 2, 2), .prudence = "stingy") |> summarize( sum(a), n(), n_distinct(b), ) duckplyr::duckdb_tibble(a = 1:3, b = c(1, 2, NA), .prudence = "stingy") |> summarize( mean(b, na.rm = TRUE), median(a), sd(b), ) duckplyr::duckdb_tibble(a = 1:3, .prudence = "stingy") |> summarize( min(a), max(a), any(a > 1), all(a > 1), )
All optional arguments to dplyr::lag()
and dplyr::lead()
are supported.
duckplyr::duckdb_tibble(a = 1:3, .prudence = "stingy") |> mutate(lag(a), lead(a)) duckplyr::duckdb_tibble(a = 1:3, .prudence = "stingy") |> mutate(lag(a, 2), lead(a, n = 2)) duckplyr::duckdb_tibble(a = 1:3, .prudence = "stingy") |> mutate(lag(a, default = 0), lead(a, default = 4)) duckplyr::duckdb_tibble(a = 1:3, b = c(2, 3, 1), .prudence = "stingy") |> mutate(lag(a, order_by = b), lead(a, order_by = b))
Ranking in DuckDB is very different from dplyr. Most functions in DuckDB rank only by the current row number, whereas in dplyr, ranking is done by a column. It will be difficult to provide translations for the following ranking functions.
rank()
, dplyr::min_rank()
, dplyr::dense_rank()
dplyr::percent_rank()
, dplyr::cume_dist()
Implementing dplyr::ntile()
is feasible for the n
argument.
The only ranking function currently implemented is dplyr::row_number()
.
duckplyr::duckdb_tibble(a = c(1, 2, 2, 3), .prudence = "stingy") |> mutate(row_number())
$
(?Extract
) is implemented if the LHS is .data
or .env
:
b <- 4 duckplyr::duckdb_tibble(a = 1, b = 2, .prudence = "stingy") |> mutate(.data$a + .data$b, .env$b)
%in%
(?match
) is implemented if the RHS is a constant with up to 100 values:
duckplyr::duckdb_tibble(a = 1:3, .prudence = "stingy") |> mutate(a %in% c(1, 3)) |> collect() duckplyr::last_rel()
dplyr::desc()
is only implemented in the context of dplyr::arrange()
:
duckplyr::duckdb_tibble(a = 1:3, .prudence = "stingy") |> arrange(desc(a)) |> explain()
suppressWarnings()
is a no-op:
duckplyr::duckdb_tibble(a = 1, .prudence = "stingy") |> mutate(suppressWarnings(a + 1))
Refer to our contributing guide to learn how to contribute new translations to the package. Ideally, duckplyr will also support adding custom translations for functions for the duration of the current R session.
This section tracks known incompatibilities between dplyr and duckplyr. Changing these is likely to require substantial effort, and might be best addressed by providing new functions with consistent behavior in both dplyr and DuckDB.
DuckDB does not guarantee order stability for the output. For performance reasons, duckplyr does not enable output order stability by default.
duckplyr::flights_df() |> duckplyr::as_duckdb_tibble() |> distinct(day) |> summarize(paste(day, collapse = " ")) # fallback duckplyr::flights_df() |> distinct(day) |> summarize(paste(day, collapse = " "))
This can be changed globally with the DUCKPLYR_OUTPUT_ORDER
environment variable, see ?config
for details.
With this setting, the output order is stable, but the plans are more complicated, and DuckDB needs to do more work.
duckplyr::flights_df() |> duckplyr::as_duckdb_tibble() |> distinct(day) |> explain() withr::with_envvar( c(DUCKPLYR_OUTPUT_ORDER = "TRUE"), duckplyr::flights_df() |> duckplyr::as_duckdb_tibble() |> distinct(day) |> explain() )
sum()
In duckplyr, this function returns a numeric value also for integers, due to DuckDB's type stability requirement.
duckplyr::duckdb_tibble(a = 1:100) |> summarize(sum(a)) duckplyr::duckdb_tibble(a = 1:1000000) |> summarize(sum(a)) tibble(a = 1:100) |> summarize(sum(a)) tibble(a = 1:1000000) |> summarize(sum(a))
At the time of writing, empty vectors only occur when summarizing an empty table without grouping.
In all cases, duckplyr returns NA
, and the behavior of dplyr is different:
sum()
for an empty vector returns 0
any()
and all()
return FALSE
min()
and max()
return infinity values (with a warning)duckplyr::duckdb_tibble(a = integer(), b = logical()) |> summarize(sum(a), any(b), all(b), min(a), max(a)) tibble(a = integer(), b = logical()) |> summarize(sum(a), any(b), all(b), min(a), max(a))
min()
and max()
for logical inputFor completeness, duckplyr returns a logical for min()
and max()
when the input is logical, while dplyr returns an integer.
duckplyr::duckdb_tibble(a = c(TRUE, FALSE)) |> summarize(min(a), max(a)) tibble(a = c(TRUE, FALSE)) |> summarize(min(a), max(a))
n_distinct()
and missing valuesUnlike most other aggregation functions, n_distinct()
ignores missing values and does not support the na.rm
argument.
This is tracked in https://github.com/tidyverse/duckplyr/issues/572.
duckplyr::duckdb_tibble(a = c(1, 2, NA, 1)) |> summarize(n_distinct(a)) duckplyr::duckdb_tibble(a = c(1, 2, NA, 1), .prudence = "stingy") |> summarize(n_distinct(a, na.rm = TRUE)) tibble(a = c(1, 2, NA, 1)) |> summarize(n_distinct(a)) tibble(a = c(1, 2, NA, 1)) |> summarize(n_distinct(a, na.rm = TRUE))
is.na()
and NaN
valuesThis function returns FALSE
for NaN
values in duckplyr, while it returns TRUE
in dplyr.
duckplyr::duckdb_tibble(a = c(NA, NaN)) |> mutate(is.na(a)) tibble(a = c(NA, NaN)) |> mutate(is.na(a))
Does the same pipeline give different results with tibble()
and duckdb_tibble()
?
We would love to hear about it, please file an issue.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.