README.md

scISR: Single-cell Imputation using Subspace Regression

scISR performs imputation for single-cell sequencing data. scISR identifies the true dropout values in the scRNA-seq dataset using hyper-geomtric testing approach. Based on the result obtained from hyper-geometric testing, the original dataset is segregated into two including training data and imputable data. Next, training data is used for constructing a generalize linear regression model that is used for imputation on the imputable data. The package is now available on CRAN.

How to install

Example

Load the Goolam dataset and perform imputation

Result assessment

library(irlba)
library(mclust)
set.seed(1)
# Filter genes that have only zeros from raw data
raw_filer <- raw[rowSums(raw != 0) > 0, ]
pca_raw <- irlba::prcomp_irlba(t(raw_filer), n = 50)$x
cluster_raw <- kmeans(pca_raw, length(unique(label)),
                      nstart = 2000, iter.max = 2000)$cluster
print(paste('ARI of clusters using raw data:', round(adjustedRandIndex(cluster_raw, label),3)))
set.seed(1)
pca_imputed <- irlba::prcomp_irlba(t(imputed), n = 50)$x
cluster_imputed <- kmeans(pca_imputed, length(unique(label)),
                          nstart = 2000, iter.max = 2000)$cluster
print(paste('ARI of clusters using imputed data:', round(adjustedRandIndex(cluster_imputed, label),3)))

Citation:

Duc Tran, Bang Tran, Hung Nguyen, Tin Nguyen (2022). A novel method for single-cell data imputation using subspace regression. Scientific Reports, 12, 2697. doi: 10.1038/s41598-022-06500-4 (link)



duct317/scISR documentation built on July 7, 2022, 1:23 a.m.