========================================================

library(knitr)
library(rmarkdown)
options(scipen=3)
options(width=60)
opts_chunk$set(comment = "", warning = FALSE, message = FALSE, echo = TRUE, tidy = FALSE, size="small",fig.height=5)
tmp99<-get.result()

Hypothesis for Power Analysis

cat('Comparison of ',round(tmp99$p20*100),'% versus ',round(tmp99$p10*100),'% Response Rate') 

Sample Size Calculation

cat(tmp99$a1)

Operating Characteristics

cat(tmp99$a2)

Power Analysis

cat(tmp99$power)

Type I error

cat(tmp99$typeI)

Summary

cat(tmp99$a3)

Tables of Power Anlaysis

    tmp98 <- get.result()

    tmp2<-as.vector(tmp98$ans[,1])
    name1<-tmp2[tmp2!='']
    tmp3<-tmp98$tmp

    for(i in 1:length(tmp3))
    {
      tmp40<-tmp3[[i]]
      tmp4<-data.frame(tmp40[1:3,])
      tmp41<-as.vector(tmp40[4,])
      name2<- if(i!=4) paste(name1[i],' (',tmp41[2],')',sep='') else paste(name1[i],' (',tmp41[3],')',sep='')

      cat('\n-----------------------------------------------\n')
      cat('\n\n',name2,'\n')
      print(kable(tmp4))
      cat('\n',tmp41[1],'\n')
      if(i!=4) cat('\n',tmp41[2],'\n') else cat('\n',tmp41[3],'\n')
    }


dungtsa/BayesianPickWinner documentation built on Dec. 11, 2024, 1:12 p.m.