runMCMC | R Documentation |
Run MCMC iterations
runMCMC(
track,
nbStates,
nbIter,
burnin,
inits,
fixed,
priors,
props,
tunes,
Hmat,
updateState = TRUE,
adapt = FALSE,
model = NA,
debug = FALSE,
silent = FALSE
)
track |
data.frame. Data, with columns |
nbStates |
integer. Number of states |
nbIter |
integer. Number of iterations for the MCMC |
inits |
list. Initial parameters:
|
fixed |
list of fixed parameters:
|
priors |
list. Parameters of prior distributions, with components:
|
props |
list. Parameters of proposal distributions, with components:
|
tunes |
list. Tuning parameters, with components:
|
Hmat |
matrix. Observation error variance (four columns, and one row for each row of data) |
updateState |
logical. If |
adapt |
integer. If |
model |
experimental |
Michelot, T., Blackwell, P.G. (2019). State‐switching continuous‐time correlated random walks. Methods Ecol Evol, 10: 637-649. doi:10.1111/2041-210X.13154
Vihola, M. (2012). Robust adaptive Metropolis algorithm with coerced acceptance rate. Stat Comput, 22: 997-1008. doi:10.1007/s11222-011-9269-5
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.