library(dyngen)
This vignette demonstrates the different dynamic processes topologies (e.g. bifurcating and cyclic). Note that, for the sake of reducing runtime for generating this vignette, the simulations are ran with reduced settings. Check out the vignette on tweaking parameters for information on how the different parameters are changed.
You can find a full list of backbones using ?list_backbones
. This
vignette will showcase each of them individually.
set.seed(1)
backbone <- backbone_linear()
init <- initialise_model(
backbone = backbone,
num_cells = 500,
num_tfs = 100,
num_targets = 0,
num_hks = 0,
simulation_params = simulation_default(census_interval = 10, ssa_algorithm = ssa_etl(tau = 300 / 3600)),
verbose = FALSE
)
out <- generate_dataset(init, make_plots = TRUE)
out$plot
set.seed(2)
backbone <- backbone_bifurcating()
init <- initialise_model(
backbone = backbone,
num_cells = 500,
num_tfs = 100,
num_targets = 0,
num_hks = 0,
simulation_params = simulation_default(census_interval = 10, ssa_algorithm = ssa_etl(tau = 300 / 3600)),
verbose = FALSE
)
out <- generate_dataset(init, make_plots = TRUE)
out$plot
set.seed(3)
backbone <- backbone_bifurcating_converging()
init <- initialise_model(
backbone = backbone,
num_cells = 500,
num_tfs = 100,
num_targets = 0,
num_hks = 0,
simulation_params = simulation_default(census_interval = 10, ssa_algorithm = ssa_etl(tau = 300 / 3600)),
verbose = FALSE
)
out <- generate_dataset(init, make_plots = TRUE)
out$plot
set.seed(4)
backbone <- backbone_bifurcating_cycle()
init <- initialise_model(
backbone = backbone,
num_cells = 500,
num_tfs = 100,
num_targets = 0,
num_hks = 0,
simulation_params = simulation_default(census_interval = 10, ssa_algorithm = ssa_etl(tau = 300 / 3600)),
verbose = FALSE
)
out <- generate_dataset(init, make_plots = TRUE)
out$plot
set.seed(5)
backbone <- backbone_bifurcating_loop()
init <- initialise_model(
backbone = backbone,
num_cells = 500,
num_tfs = 100,
num_targets = 0,
num_hks = 0,
simulation_params = simulation_default(census_interval = 10, ssa_algorithm = ssa_etl(tau = 300 / 3600)),
verbose = FALSE
)
out <- generate_dataset(init, make_plots = TRUE)
out$plot
set.seed(6)
backbone <- backbone_binary_tree(
num_modifications = 2
)
init <- initialise_model(
backbone = backbone,
num_cells = 500,
num_tfs = 100,
num_targets = 0,
num_hks = 0,
simulation_params = simulation_default(census_interval = 10, ssa_algorithm = ssa_etl(tau = 300 / 3600)),
verbose = FALSE
)
out <- generate_dataset(init, make_plots = TRUE)
out$plot
set.seed(7)
backbone <- backbone_branching(
num_modifications = 2,
min_degree = 3,
max_degree = 3
)
init <- initialise_model(
backbone = backbone,
num_cells = 500,
num_tfs = 100,
num_targets = 0,
num_hks = 0,
simulation_params = simulation_default(census_interval = 10, ssa_algorithm = ssa_etl(tau = 300 / 3600)),
verbose = FALSE
)
out <- generate_dataset(init, make_plots = TRUE)
#> Warning in .generate_cells_predict_state(model): Simulation does not contain all gold standard edges. This simulation likely suffers from bad kinetics; choose a different seed and rerun.
out$plot
set.seed(8)
backbone <- backbone_consecutive_bifurcating()
init <- initialise_model(
backbone = backbone,
num_cells = 500,
num_tfs = 100,
num_targets = 0,
num_hks = 0,
simulation_params = simulation_default(census_interval = 10, ssa_algorithm = ssa_etl(tau = 300 / 3600)),
verbose = FALSE
)
out <- generate_dataset(init, make_plots = TRUE)
#> Warning in .generate_cells_predict_state(model): Simulation does not contain all gold standard edges. This simulation likely suffers from bad kinetics; choose a different seed and rerun.
out$plot
set.seed(9)
backbone <- backbone_trifurcating()
init <- initialise_model(
backbone = backbone,
num_cells = 500,
num_tfs = 100,
num_targets = 0,
num_hks = 0,
verbose = FALSE
)
out <- generate_dataset(init, make_plots = TRUE)
out$plot
set.seed(10)
backbone <- backbone_converging()
init <- initialise_model(
backbone = backbone,
num_cells = 500,
num_tfs = 100,
num_targets = 0,
num_hks = 0,
simulation_params = simulation_default(census_interval = 10, ssa_algorithm = ssa_etl(tau = 300 / 3600)),
verbose = FALSE
)
out <- generate_dataset(init, make_plots = TRUE)
out$plot
set.seed(11)
backbone <- backbone_cycle()
init <- initialise_model(
backbone = backbone,
num_cells = 500,
num_tfs = 100,
num_targets = 0,
num_hks = 0,
simulation_params = simulation_default(census_interval = 10, ssa_algorithm = ssa_etl(tau = 300 / 3600)),
verbose = FALSE
)
out <- generate_dataset(init, make_plots = TRUE)
out$plot
set.seed(12)
backbone <- backbone_disconnected()
init <- initialise_model(
backbone = backbone,
num_cells = 500,
num_tfs = 100,
num_targets = 0,
num_hks = 0,
simulation_params = simulation_default(census_interval = 10, ssa_algorithm = ssa_etl(tau = 300 / 3600)),
verbose = FALSE
)
out <- generate_dataset(init, make_plots = TRUE)
#> Warning in .generate_cells_predict_state(model): Simulation does not contain all gold standard edges. This simulation likely suffers from bad kinetics; choose a different seed and rerun.
out$plot
set.seed(13)
backbone <- backbone_linear_simple()
init <- initialise_model(
backbone = backbone,
num_cells = 500,
num_tfs = 100,
num_targets = 0,
num_hks = 0,
verbose = FALSE
)
out <- generate_dataset(init, make_plots = TRUE)
out$plot
set.seed(14)
backbone <- backbone_cycle_simple()
init <- initialise_model(
backbone = backbone,
num_cells = 500,
num_tfs = 100,
num_targets = 0,
num_hks = 0,
verbose = FALSE
)
out <- generate_dataset(init, make_plots = TRUE)
out$plot
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.