knitr::opts_chunk$set(comment = "#>", collapse = TRUE) library(dplyr) library(purrr) library(stringr) library(ggplot2) library(dynutils) set.seed(1)
lines <- readLines("functionality.Rmd") headings <- c(which(grepl("^## ", lines)), length(lines)) subheadings <- which(grepl("^### .*`", lines)) strs <- map_chr(seq_len(length(headings) - 1), function(i) { head <- lines[[headings[[i]]]] subhead <- subheadings %>% keep(~ headings[[i]] < . & . < headings[[i+1]]) %>% lines[.] if (length(subhead) > 0) { fun_texts <- gsub("[^`]*(`[^`]*`).*", "\\1", subhead) fun_links <- subhead %>% tolower() %>% str_replace_all(" ", "-") %>% str_replace_all("[^a-z\\-_]", "") %>% str_replace("^-*", "#") paste0( gsub("## ", "* ", head), ": \n", paste0(" [", fun_texts, "](", fun_links, ")", collapse = ",\n", sep = ""), "\n" ) } else { "" } }) cat(strs, sep = "")
add_class
: Add a class to an objectl <- list(important_number = 42) %>% add_class("my_list") l
extend_with
: Extend list with more datal %>% extend_with( .class_name = "improved_list", url = "https://github.com/dynverse/dynverse" )
calculate_distance
: Compute pairwise distances between two matricesSee ?calculate_distance
for the list of currently supported distances.
x <- matrix(runif(30), ncol = 10) y <- matrix(runif(50), ncol = 10) calculate_distance(x, y, method = "euclidean")
For euclidean distances, this is similar to calculating:
as.matrix(dist(rbind(x, y)))[1:3, -1:-3]
project_to_segments
: Project a set of points to to set of segmentsx <- matrix(rnorm(50, 0, .5), ncol = 2) segfrom <- matrix(c(0, 1, 0, -1, 1, 0, -1, 0), ncol = 2, byrow = TRUE) segto <- segfrom / 10 fit <- project_to_segments(x, segfrom, segto) ggplot() + geom_segment(aes(x = x[,1], xend = fit$x_proj[,1], y = x[,2], yend = fit$x_proj[,2], colour = "projection"), linetype = "dashed") + geom_point(aes(x[,1], x[,2], colour = "point")) + geom_segment(aes(x = segfrom[,1], xend = segto[,1], y = segfrom[,2], yend = segto[,2], colour = "segment")) + scale_colour_brewer(palette = "Dark2") + scale_x_continuous(name = NULL, breaks = NULL) + scale_y_continuous(name = NULL, breaks = NULL) + labs(colour = "Object type") + theme_classic() str(fit)
calculate_mean
: Calculate a (weighted) mean between vectors or a list of vectors; supports the arithmetic, geometric and harmonic meancalculate_arithmetic_mean(0.1, 0.5, 0.9) calculate_geometric_mean(0.1, 0.5, 0.9) calculate_harmonic_mean(0.1, 0.5, 0.9) calculate_mean(.1, .5, .9, method = "harmonic") # example with multiple vectors calculate_arithmetic_mean(c(0.1, 0.9), c(0.2, 1)) # example with a list of vectors vectors <- list(c(0.1, 0.2), c(0.4, 0.5)) calculate_geometric_mean(vectors) # example of weighted means calculate_geometric_mean(c(0.1, 10), c(0.9, 20), c(0.5, 2), weights = c(1, 2, 5))
expand_matrix
: Add rows and columns to a matrixx <- matrix(runif(12), ncol = 4, dimnames = list(c("a", "c", "d"), c("D", "F", "H", "I"))) expand_matrix(x, letters[1:5], LETTERS[1:10], fill = 0)
scale_uniform
: Rescale data to have a certain center and max rangeGenerate a matrix from a normal distribution with a large standard deviation, centered at c(5, 5).
x <- matrix(rnorm(200*2, sd = 10, mean = 5), ncol = 2)
Center the dataset at c(0, 0) with a minimum of c(-.5, -.5) and a maximum of c(.5, .5).
x_scaled <- scale_uniform(x, center = 0, max_range = 1)
Check the ranges and verify that the scaling is correct.
ranges <- apply(x_scaled, 2, range) ranges # should all lie between -.5 and .5 colMeans(ranges) # should all be equal to 0 apply(ranges, 2, diff) # max should be 1
scale_minmax
: Rescale data to a [0, 1] rangex_scaled2 <- scale_minmax(x)
Check the ranges and verify that the scaling is correct.
apply(x_scaled2, 2, range) # each column should be [0, 1]
scale_quantile
: Cut off outer quantiles and rescale to a [0, 1] rangex_scaled3 <- scale_quantile(x, .05)
Check the ranges and verify that the scaling is correct.
apply(x_scaled3, 2, range) # each column should be [0, 1] qplot(x_scaled2[,1], x_scaled3[,1]) + theme_bw()
inherit_default_params
: Have one function inherit the default parameters from other functionsfun1 <- function(a = 10, b = 7) runif(a, -b, b) fun2 <- function(c = 9) 2^c fun3 <- inherit_default_params( super = list(fun1, fun2), fun = function(a, b, c) { list(x = fun1(a, b), y = fun2(c)) } ) fun3
check_packages
: Easily checking whether certain packages are installedcheck_packages("SCORPIUS", "dynutils", "wubbalubbadubdub") check_packages(c("princurve", "mlr", "tidyverse"))
install_packages
: Install packages taking into account the remotes of anotherThis is useful for installing suggested packages with GitHub remotes.
install_packages("SCORPIUS", package = "dynmethods", prompt = TRUE)
> install_packages("SCORPIUS", package = "dynmethods", prompt = TRUE) Following packages have to be installed: SCORPIUS Do you want to install these packages? (y/yes/1 or n/no/2): 1 Installing SCORPIUS ... ** testing if installed package can be loaded * DONE (SCORPIUS) Installed SCORPIUS [1] "SCORPIUS"
random_time_string
: Generates a string very likely to be uniquerandom_time_string("test") random_time_string("test") random_time_string("test")
list_as_tibble
: Convert a list of lists to a tibble whilst retaining class informationli <- list( list(a = 1, b = log10, c = "parrot") %>% add_class("myobject"), list(a = 2, b = sqrt, c = "quest") %>% add_class("yourobject") ) tib <- list_as_tibble(li) tib
tibble_as_list
: Convert a tibble back to a list of lists whilst retaining class informationli <- tibble_as_list(tib) li
extract_row_to_list
: Extracts one row from a tibble and converts it to a listextract_row_to_list(tib, 2)
mapdf
: Apply a function to each row of a data frameThe mapdf
functions apply a function on each row of a data frame. They are based heavily on purrr's map
functions.
tib %>% mapdf(class)
Or use an anonymous function.
tib %>% mapdf(function(row) paste0(row$b(row$a), "_", row$c))
Or even a formula.
tib %>% mapdf(~ .$b)
There are many more variations available. See ?mapdf
for more info.
tib %>% mapdf_lgl(~ .$a > 1) tib %>% mapdf_chr(~ paste0("~", .$c, "~")) tib %>% mapdf_int(~ nchar(.$c)) tib %>% mapdf_dbl(~ .$a * 1.234)
safe_tempdir
: Create an empty temporary directory and return its path```{R safe_tempdir} safe_tempdir("samson")
## Assertion helpers ### `%all_in%`: Check whether a vector are all elements of another vector ```r library(assertthat) assert_that(c(1, 2) %all_in% c(0, 1, 2, 3, 4)) assert_that("a" %all_in% letters) assert_that("A" %all_in% letters) assert_that(1:10 %all_in% letters)
%has_names%
: Check whether an object has certain namesassert_that(li %has_names% "a") assert_that(li %has_names% "c") assert_that(li %has_names% letters)
is_single_numeric
: Check whether a value is a single numericassert_that(is_single_numeric(1)) assert_that(is_single_numeric(Inf)) assert_that(is_single_numeric(1.6)) assert_that(is_single_numeric(NA)) assert_that(is_single_numeric(1:6)) assert_that(is_single_numeric("pie"))
is_bounded
: Check whether a value within a certain intervalassert_that(is_bounded(10)) assert_that(is_bounded(10:30)) assert_that(is_bounded(Inf)) assert_that(is_bounded(10, lower_bound = 20)) assert_that(is_bounded( 10, lower_bound = 20, lower_closed = TRUE, upper_bound = 30, upper_closed = FALSE ))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.