dir <- tempdir() knitr::opts_knit$set(root.dir = normalizePath(tempdir(), winslash = '/')) # dyncli is not installed on travis or CRAN, so don't run some parts of the vignette there NOT_CRAN <- Sys.getenv("NOT_CRAN") == "" || identical(tolower(Sys.getenv("NOT_CRAN")), "true") NOT_TRAVIS <- !identical(tolower(Sys.getenv("TRAVIS")), "true")
library(dynwrap)
An alternative to wrapping a script inside R, is to wrap it using an external script. Because this does not provide any dependency management, this is not really useful for method end-users, but rather as a way to easily develop a TI method and to ultimately step up towards containerised wrapping.
Similarly as a wrapper written in R, you'll need to provide both a definition (= a definition.yml) and a way to run the methods (= a script).
The definition has the same hierarchical structure as used by the definition()
function. A minimal example
definition_string <- paste0(readLines(system.file("examples/script/definition.yml", package = "dynwrap")), "\n", collapse = "") readr::write_file(definition_string, "definition.yml") knitr::asis_output(paste0("```yaml\n", definition_string, "\n```"))
You can use our template definition.yml to see all the different possibilities of what can be included in the definition: https://github.com/dynverse/dynmethods/tree/master/template_container . It may also be useful to check out some of the wrappers in dynmethods, e.g.: https://github.com/dynverse/ti_paga/blob/master/definition.yml
A running script reads in the data, creates a trajectory, and again writes the trajectory to a file. To do the loading and writing tasks, we provide helper libraries for R and python: dyncli and dynclipy.
The wrapper script will typically have the following structure:
#!/usr/bin/env Rscript
or #!/usr/bin/env python
dataset <- dyncli::main()
or dataset = dynclipy.main()
dyncli::write_output(trajectory)
or trajectory.write_output()
A minimal example script for R:
run_r_string <- paste0(readLines(system.file("examples/script/run.R", package = "dynwrap")), "\n", collapse = "") readr::write_file(run_r_string, "run.R") knitr::asis_output(paste0("```r\n", run_r_string, "\n```"))
Make sure this script is executable!
```{bash, eval=NOT_CRAN && NOT_TRAVIS} chmod +x run.R
and for Python: <div class="filename">run.py</div> ```r run_py_script <- paste0(readLines(system.file("examples/script/run.py", package = "dynwrap")), "\n", collapse = "") readr::write_file(run_py_script, "run.py") knitr::asis_output(paste0("```python\n", run_py_script, "\n```"))
method <- create_ti_method_definition("definition.yml", "run.R") dataset <- dynwrap::example_dataset trajectory <- infer_trajectory(dataset, method(), verbose = TRUE)
If you have dynplot installed, you can also plot the trajectory:
library(dynplot) # for now, install from github using: # remotes::install_github("dynverse/dynplot") plot_graph(trajectory) plot_heatmap(trajectory, expression_source = dataset$expression)
With the debug parameter, it is possible to enter the script interactively. This makes it easier to develop TI method as you can just load in the input data, and code!
trajectory <- infer_trajectory(dataset, method(), debug = TRUE)
Wrapping a method inside a script does not have any dependency management, and is therefore only meant for development purposes. To deploy your method to other users, check out the containerisation tutorial!
While using dyncli to load and save the data is the most straightforward when using R and python, it's also possible to skip these packages and do all the work yourself. Briefly you have to:
--dataset input.h5
.If after this you're still convinced you want to do this, please contact us. We'll be able to provide some further documentation!
temp_files <- c("run.R", "run.py", "definition.yml") for (file in temp_files) { if (file.exists(file)) file.remove(file) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.