knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
library(activelearning)
library(dplyr)
library(sits)
library(igraph)
# samples_tb <- system.file("extdata/samples.rds",
#                           package = "activelearning") %>%
#   readRDS() %>%
#   dplyr::mutate(sample_id = 1:nrow(.))
# 
# n_labelled <- 5
# 
# s_labelled_tb <- samples_tb %>%
#   dplyr::group_by(label) %>% 
#   dplyr::sample_n(size = n_labelled) %>%
#   dplyr::ungroup()
# 
# s_unlabelled_tb <- samples_tb %>%
#   dplyr::filter(!(sample_id %in% s_labelled_tb$sample_id)) %>% 
#   dplyr::mutate(label = NA)
# 
# sim_method = "Euclidean"
# budget = 2000
# 
# # Number of edges to keep in the graph.
# # It is the n closest neighbors.
# keep_n = 50 
# keep_n = 25 
# keep_n = 10


e-sensing/activelearning documentation built on Dec. 20, 2021, 2:21 a.m.