#' @title Row means or sums (optionally with minimum amount of valid values)
#' @name row_means
#' @description This function is similar to the SPSS `MEAN.n` or `SUM.n`
#' function and computes row means or row sums from a data frame or matrix if at
#' least `min_valid` values of a row are valid (and not `NA`).
#'
#' @param data A data frame with at least two columns, where row means or row
#' sums are applied.
#' @param min_valid Optional, a numeric value of length 1. May either be
#' - a numeric value that indicates the amount of valid values per row to
#' calculate the row mean or row sum;
#' - or a value between `0` and `1`, indicating a proportion of valid values per
#' row to calculate the row mean or row sum (see 'Details').
#' - `NULL` (default), in which all cases are considered.
#'
#' If a row's sum of valid values is less than `min_valid`, `NA` will be returned.
#' @param digits Numeric value indicating the number of decimal places to be
#' used for rounding mean values. Negative values are allowed (see 'Details').
#' By default, `digits = NULL` and no rounding is used.
#' @param remove_na Logical, if `TRUE` (default), removes missing (`NA`) values
#' before calculating row means or row sums. Only applies if `min_valid` is not
#' specified.
#' @param verbose Toggle warnings.
#' @inheritParams extract_column_names
#'
#' @return A vector with row means (for `row_means()`) or row sums (for
#' `row_sums()`) for those rows with at least `n` valid values.
#'
#' @details Rounding to a negative number of `digits` means rounding to a power
#' of ten, for example `row_means(df, 3, digits = -2)` rounds to the nearest
#' hundred. For `min_valid`, if not `NULL`, `min_valid` must be a numeric value
#' from `0` to `ncol(data)`. If a row in the data frame has at least `min_valid`
#' non-missing values, the row mean or row sum is returned. If `min_valid` is a
#' non-integer value from 0 to 1, `min_valid` is considered to indicate the
#' proportion of required non-missing values per row. E.g., if
#' `min_valid = 0.75`, a row must have at least `ncol(data) * min_valid`
#' non-missing values for the row mean or row sum to be calculated. See
#' 'Examples'.
#'
#' @examples
#' dat <- data.frame(
#' c1 = c(1, 2, NA, 4),
#' c2 = c(NA, 2, NA, 5),
#' c3 = c(NA, 4, NA, NA),
#' c4 = c(2, 3, 7, 8)
#' )
#'
#' # default, all means are shown, if no NA values are present
#' row_means(dat)
#'
#' # remove all NA before computing row means
#' row_means(dat, remove_na = TRUE)
#'
#' # needs at least 4 non-missing values per row
#' row_means(dat, min_valid = 4) # 1 valid return value
#' row_sums(dat, min_valid = 4) # 1 valid return value
#'
#' # needs at least 3 non-missing values per row
#' row_means(dat, min_valid = 3) # 2 valid return values
#'
#' # needs at least 2 non-missing values per row
#' row_means(dat, min_valid = 2)
#'
#' # needs at least 1 non-missing value per row, for two selected variables
#' row_means(dat, select = c("c1", "c3"), min_valid = 1)
#'
#' # needs at least 50% of non-missing values per row
#' row_means(dat, min_valid = 0.5) # 3 valid return values
#' row_sums(dat, min_valid = 0.5)
#'
#' # needs at least 75% of non-missing values per row
#' row_means(dat, min_valid = 0.75) # 2 valid return values
#'
#' @export
row_means <- function(data,
select = NULL,
exclude = NULL,
min_valid = NULL,
digits = NULL,
ignore_case = FALSE,
regex = FALSE,
remove_na = FALSE,
verbose = TRUE) {
# evaluate arguments
select <- .select_nse(select,
data,
exclude,
ignore_case = ignore_case,
regex = regex,
verbose = verbose
)
# prepare data, sanity checks
data <- .prepare_row_data(data, select, min_valid, verbose)
# calculate row means
.row_sums_or_means(data, min_valid, digits, remove_na, fun = "mean")
}
#' @rdname row_means
#' @export
row_sums <- function(data,
select = NULL,
exclude = NULL,
min_valid = NULL,
digits = NULL,
ignore_case = FALSE,
regex = FALSE,
remove_na = FALSE,
verbose = TRUE) {
# evaluate arguments
select <- .select_nse(select,
data,
exclude,
ignore_case = ignore_case,
regex = regex,
verbose = verbose
)
# prepare data, sanity checks
data <- .prepare_row_data(data, select, min_valid, verbose)
# calculate row sums
.row_sums_or_means(data, min_valid, digits, remove_na, fun = "sum")
}
# helper ------------------------
# calculate row means or sums
.row_sums_or_means <- function(data, min_valid, digits, remove_na, fun) {
if (is.null(min_valid)) {
# calculate row means or sums for complete data
out <- switch(fun,
mean = rowMeans(data, na.rm = remove_na),
rowSums(data, na.rm = remove_na)
)
} else {
# is 'min_valid' indicating a proportion?
decimals <- min_valid %% 1
if (decimals != 0) {
min_valid <- round(ncol(data) * decimals)
}
# min_valid may not be larger as df's amount of columns
if (ncol(data) < min_valid) {
insight::format_error("`min_valid` must be smaller or equal to number of columns in data frame.")
}
# row means or sums
to_na <- rowSums(is.na(data)) > ncol(data) - min_valid
out <- switch(fun,
mean = rowMeans(data, na.rm = TRUE),
rowSums(data, na.rm = TRUE)
)
out[to_na] <- NA
}
# round, if requested
if (!is.null(digits) && !all(is.na(digits))) {
out <- round(out, digits = digits)
}
out
}
# check that data is in shape for row means or row sums
.prepare_row_data <- function(data, select, min_valid, verbose) {
if (is.null(select) || length(select) == 0) {
insight::format_error("No columns selected.")
}
data <- .coerce_to_dataframe(data[select])
# n must be a numeric, non-missing value
if (!is.null(min_valid) && (all(is.na(min_valid)) || !is.numeric(min_valid) || length(min_valid) > 1)) {
insight::format_error("`min_valid` must be a numeric value of length 1.")
}
# make sure we only have numeric values
numeric_columns <- vapply(data, is.numeric, TRUE)
if (!all(numeric_columns)) {
if (verbose) {
insight::format_alert("Only numeric columns are considered for calculation.")
}
data <- data[numeric_columns]
}
# check if we have a data framme with at least two columns
if (ncol(data) < 2) {
insight::format_error("`data` must be a data frame with at least two numeric columns.")
}
data
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.