View source: R/methods_metafor.R
model_parameters.rma | R Documentation |
Extract and compute indices and measures to describe parameters of meta-analysis models.
## S3 method for class 'rma'
model_parameters(
model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
include_studies = TRUE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)
model |
Model object. |
ci |
Confidence Interval (CI) level. Default to |
bootstrap |
Should estimates be based on bootstrapped model? If
|
iterations |
The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models. |
standardize |
The method used for standardizing the parameters. Can be
|
exponentiate |
Logical, indicating whether or not to exponentiate the
coefficients (and related confidence intervals). This is typical for
logistic regression, or more generally speaking, for models with log or
logit links. It is also recommended to use |
include_studies |
Logical, if |
keep |
Character containing a regular expression pattern that
describes the parameters that should be included (for |
drop |
See |
verbose |
Toggle warnings and messages. |
... |
Arguments passed to or from other methods. For instance, when
Further non-documented arguments are:
|
A data frame of indices related to the model's parameters.
library(parameters)
mydat <<- data.frame(
effectsize = c(-0.393, 0.675, 0.282, -1.398),
stderr = c(0.317, 0.317, 0.13, 0.36)
)
if (require("metafor", quietly = TRUE)) {
model <- rma(yi = effectsize, sei = stderr, method = "REML", data = mydat)
model_parameters(model)
}
# with subgroups
if (require("metafor", quietly = TRUE)) {
data(dat.bcg)
dat <- escalc(
measure = "RR",
ai = tpos,
bi = tneg,
ci = cpos,
di = cneg,
data = dat.bcg
)
dat$alloc <- ifelse(dat$alloc == "random", "random", "other")
d <<- dat
model <- rma(yi, vi, mods = ~alloc, data = d, digits = 3, slab = author)
model_parameters(model)
}
if (require("metaBMA", quietly = TRUE)) {
data(towels)
m <- suppressWarnings(meta_random(logOR, SE, study, data = towels))
model_parameters(m)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.