WIP/r2mlm_test.R

library(lme4)
library(r2mlm)


source("r2mlm_init.R")


# Example -----------------------------------------------------------------

model <- lmer(satisfaction ~ salary_c + (1 + salary_c | schoolID), data = r2mlm::teachsat)

l <- r2mlm_init(model) # Get list of ingredients
r2mlm::r2mlm_manual(data = l$data, within_covs = l$within_covs, between_covs = l$between_covs, random_covs = l$random_covs, gamma_w = l$gamma_w, gamma_b = l$gamma_b, Tau = l$Tau, sigma2 = l$sigma2, has_intercept = l$has_intercept, clustermeancentered = l$clustermeancentered)

# Testing -----------------------------------------------------------------


test_it <- function(model) {
  l <- r2mlm_init(model)
  rez <- r2mlm::r2mlm_manual(data = l$data, within_covs = l$within_covs, between_covs = l$between_covs, random_covs = l$random_covs, gamma_w = l$gamma_w, gamma_b = l$gamma_b, Tau = l$Tau, sigma2 = l$sigma2, has_intercept = l$has_intercept, clustermeancentered = l$clustermeancentered)

  truth <- r2mlm::r2mlm(model)
  if (all(rez$Decompositions == truth$Decompositions) & all(rez$R2s == truth$R2s)) {
    print("Identical.")
  } else {
    print("Error!")
  }
}




model <- lmer(satisfaction ~ salary_c + (1 + salary_c | schoolID), data = r2mlm::teachsat)
test_it(model)
model <- lmer(satisfaction ~ salary_c * control_c + (1 + salary_c | schoolID), data = r2mlm::teachsat)
test_it(model)
# model <- lmer(satisfaction ~ 0 + salary_c + (1 + salary_c | schoolID), data = r2mlm::teachsat)
# test_it(model)

# model <- nlme::lme(satisfaction ~ salary_c, random = ~ 1 + salary_c | schoolID, data = teachsat)
# test_it(model)
easystats/performance documentation built on March 4, 2025, 7:10 p.m.