Description Usage Arguments Value Author(s) See Also
MCMC algorithm for updating the third-component likelihood 
parameters in hurdle model regression using hurdle.
| 1 2 | update_pars(y, hurd, dist, like.part, a, b, size, lam, mu, xi, sigma, lam.acc,
  mu.acc, xi.acc, sigma.acc, lam.tune, mu.tune, xi.tune, sigma.tune, g.x = F)
 | 
| y | numeric response vector of observations within the bounds of the third component of the likelihood function, y[y ≥ hurd]. | 
| hurd | numeric threshold for 'extreme' observations of two-hurdle models. | 
| dist | character specification of response distribution for the third component of the likelihood function. | 
| like.part | numeric vector of the current third-component likelihood values. | 
| a | shape parameter for gamma prior distributions. | 
| b | rate parameter for gamma prior distributions. | 
| size | size parameter for negative binomial likelihood distributions. | 
| lam | current value for the poisson likelihood lambda parameter. | 
| mu | current value for the negative binomial or log normal likelihood mu parameter. | 
| xi | current value for the generalized pareto likelihood xi parameter. | 
| sigma | current value for the generalized pareto likelihood sigma parameter. | 
| lam.acc, mu.acc, xi.acc, sigma.acc | current MCMC values for third-component parameter acceptance rates. | 
| lam.tune, mu.tune, xi.tune, sigma.tune | current MCMC tuning values for each third-component parameter. | 
| g.x | logical operator.  | 
A list of MCMC-updated likelihood estimator(s) for the third-component parameter(s) and each parameter's MCMC acceptance ratio.
Taylor Trippe <ttrippe@luc.edu> 
Earvin Balderama <ebalderama@luc.edu>
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.