Description Usage Arguments Value Author(s) See Also
MCMC algorithm for updating the third-component likelihood
parameters in hurdle model regression using hurdle
.
1 2 | update_pars(y, hurd, dist, like.part, a, b, size, lam, mu, xi, sigma, lam.acc,
mu.acc, xi.acc, sigma.acc, lam.tune, mu.tune, xi.tune, sigma.tune, g.x = F)
|
y |
numeric response vector of observations within the bounds of the third component of the likelihood function, y[y ≥ hurd]. |
hurd |
numeric threshold for 'extreme' observations of two-hurdle models. |
dist |
character specification of response distribution for the third component of the likelihood function. |
like.part |
numeric vector of the current third-component likelihood values. |
a |
shape parameter for gamma prior distributions. |
b |
rate parameter for gamma prior distributions. |
size |
size parameter for negative binomial likelihood distributions. |
lam |
current value for the poisson likelihood lambda parameter. |
mu |
current value for the negative binomial or log normal likelihood mu parameter. |
xi |
current value for the generalized pareto likelihood xi parameter. |
sigma |
current value for the generalized pareto likelihood sigma parameter. |
lam.acc, mu.acc, xi.acc, sigma.acc |
current MCMC values for third-component parameter acceptance rates. |
lam.tune, mu.tune, xi.tune, sigma.tune |
current MCMC tuning values for each third-component parameter. |
g.x |
logical operator. |
A list of MCMC-updated likelihood estimator(s) for the third-component parameter(s) and each parameter's MCMC acceptance ratio.
Taylor Trippe <ttrippe@luc.edu>
Earvin Balderama <ebalderama@luc.edu>
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.