if (requireNamespace("xgboost", quietly = TRUE)) { library(tidypredict) library(xgboost) library(dplyr) eval_code <- TRUE } else { eval_code <- FALSE } knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = eval_code )
| Function                                                      |Works|
|---------------------------------------------------------------|-----|
|tidypredict_fit(), tidypredict_sql(), parse_model()      |  ✔  |
|tidypredict_to_column()                                      |  ✔  |
|tidypredict_test()                                           |  ✔  |
|tidypredict_interval(), tidypredict_sql_interval()         |  ✗  |
|parsnip                                                      |  ✔  |
tidypredict_ functionslibrary(xgboost) logregobj <- function(preds, dtrain) { labels <- xgboost::getinfo(dtrain, "label") preds <- 1 / (1 + exp(-preds)) grad <- preds - labels hess <- preds * (1 - preds) return(list(grad = grad, hess = hess)) } xgb_bin_data <- xgboost::xgb.DMatrix(as.matrix(mtcars[, -9]), label = mtcars$am) model <- xgboost::xgb.train( params = list(max_depth = 2, silent = 1, objective = "binary:logistic", base_score = 0.5), data = xgb_bin_data, nrounds = 50 )
Create the R formula
    r
    tidypredict_fit(model)
Add the prediction to the original table ```r library(dplyr)
mtcars %>% tidypredict_to_column(model) %>% glimpse() ```
Confirm that tidypredict results match to the model's predict() results. The xg_df argument expects the xgb.DMatrix data set.
    r
    tidypredict_test(model, mtcars, xg_df = xgb_bin_data)
parsnip fitted models are also supported by tidypredict:
library(parsnip) p_model <- boost_tree(mode = "regression") %>% set_engine("xgboost") %>% fit(am ~ ., data = mtcars)
tidypredict_test(p_model, mtcars, xg_df = xgb_bin_data)
Here is an example of the model spec:
pm <- parse_model(model) str(pm, 2)
str(pm$trees[1])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.