#' @importFrom generics tidy
#' @export
generics::tidy
#' Tidy a cmdlr object
#'
#' @param x A model object of class 'cmdlr'
#' @param robust A boolean equal to TRUE if robust standard errors should be
#' used and reported. The default value is FALSE
#' @param hypotheses A vector the length of the number of parameters (incl.
#' free and fixed) with values for the null hypothesis to test against. The
#' default is a two-sided test against 0.
#' @param ... Additional parameters passed to tidy
#'
#' @method tidy cmdlr
#'
#' @return A tidy [tibble::tibble()] summarizing the component-level information
#' about the model
#'
#' @export
tidy.cmdlr <- function(x, robust = FALSE, hypotheses = NULL, ...) {
# Fix the vector of standard errors
std_err <- structure(rep(NA, length(get_param_start(x))),
names = names(get_param_start(x)))
std_err[names(get_param_free(x))] <- sqrt(diag(vcov(x, robust = robust)))
# Check whether hypotheses are supplied
if (is.null(hypotheses)) {
hypotheses <- rep(0, length(std_err))
} else {
stopifnot(length(std_err) == length(hypotheses))
}
# Construct the tibble
coef_tibble <- tibble::tibble(
term = names(get_param_start(x)),
estimate = get_param_final(x),
std.err = std_err,
statistic = (estimate - hypotheses) / std_err,
p.value = 2 * stats::pt(-abs(.data$statistic), df = nobs(x))
)
return(coef_tibble)
}
#' @importFrom generics glance
#' @export
generics::glance
#' Glance at a cmdlr model object
#'
#' A wrapper function around returning all fit
#' calculations as a tibble.
#'
#' @param x A model object of class 'cmdlr'
#' @param ... Additional parameters passed to glance
#'
#' @method glance cmdlr
#'
#' @return A tidy [tibble::tibble()] summarizing the component-level information
#' about the model
#'
#'
#' @export
glance.cmdlr <- function(x, ...) {
fit <- tibble::tibble(
name = get_name(x),
log_lik = get_function_value(x),
convergence_crit = convergence_criteria(x, ...),
adj_rho_sqrd = model_fit(x, "adj_rho_sqrd"),
aic = model_fit(x, "aic"),
aic3 = model_fit(x, "aic3"),
caic = model_fit(x, "caic"),
caic_star = model_fit(x, "caic_star"),
ht_aic = model_fit(x, "ht_aic"),
bic = model_fit(x, "bic"),
bic_star = model_fit(x, "bic_star"),
dbic = model_fit(x, "dbic"),
hqic = model_fit(x, "hqic")
)
return(fit)
}
#' @importFrom generics augment
#' @export
generics::augment
#' Augment a cmdlr object
#'
#' Returns the predicted probabilities in a tidy format
#'
#' @param x A model object of class 'cmdlr'
#' @param ... Additional parameters passed to glance
#'
#' @method augment cmdlr
#'
#' @export
augment.cmdlr <- function(x, ...) {
cli::cli_alert_info("Minimal functionality implemented. Only returns model frame")
return(
get_model_frame(x)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.