| driftMixIndVm | R Documentation | 
Drift for the Langevin diffusion associated to a mixture of
m independent (multivariate) von Mises (mivM) of dimension p.
driftMixIndVm(x, A, M, sigma, p, expTrc = 30)
x | 
 matrix of size   | 
A | 
 matrix of size   | 
M | 
 matrix of size   | 
sigma | 
 diffusion coefficient.  | 
p | 
 vector of length   | 
expTrc | 
 truncation for exponential:   | 
driftMixVm is more efficient for the circular case.
The diffusion matrix is \sigma\bold{I}. See Section 2.2.4 in
García-Portugués et al. (2019) for details.
A matrix of the same size as x containing the drift.
García-Portugués, E., Sørensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions on the torus: estimation and applications. Statistics and Computing, 29(2):1–22. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11222-017-9790-2")}
# 1D
x <- seq(-pi, pi, l = 200)
plot(x, x, type = "n", ylab = "drift")
for (i in 1:10) {
  lines(x, driftMixIndVm(x = cbind(x), A = cbind(c(2, 2)),
        M = cbind(c(0, -pi + 2 * pi * i / 10)), sigma = 1, p = c(0.5, 0.5)),
        col = rainbow(10)[i])
}
# 2D
x <- seq(-pi, pi, l = 100)
plotSurface2D(x, x, f = function(x) sqrt(rowSums(driftMixIndVm(x = x,
              A = rbind(c(1, 1), c(1, 1)), M = rbind(c(1, 1), c(-1, -1)),
              sigma = 1, p = c(0.25, 0.75))^2)), fVect = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.