knitr::opts_chunk$set( warning = FALSE, message = FALSE, collapse = TRUE, comment = "#>" )
Generate data. Correlation between the two equations 0.5 - Sample size 400.
library(GJRM) set.seed(0) n <- 400 Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1 u <- rMVN(n, rep(0,2), Sigma) x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n) f1 <- function(x) cos(pi*2*x) + sin(pi*x) f2 <- function(x) x+exp(-30*(x-0.5)^2) y1 <- -1.55 + 2*x1 + f1(x2) + u[,1] y2 <- -0.25 - 1.25*x1 + f2(x2) + u[,2] dataSim <- data.frame(y1, y2, x1, x2, x3) resp.check(y1, "N") resp.check(y2, "N") eq.mu.1 <- y1 ~ x1 + s(x2) + s(x3) eq.mu.2 <- y2 ~ x1 + s(x2) + s(x3) eq.sigma1 <- ~ 1 eq.sigma2 <- ~ 1 eq.theta <- ~ x1 fl <- list(eq.mu.1, eq.mu.2, eq.sigma1, eq.sigma2, eq.theta)
The order above is the one to follow when using more than two equations.
out <- gjrm(fl, data = dataSim, margins = c("N", "N"), Model = "B") conv.check(out) post.check(out) summary(out) AIC(out) BIC(out) jc.probs(out, 1.4, 2.3, intervals = TRUE)[1:4,]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.