c_CMeans | R Documentation |
Perform fuzzy C-means clustering using e1071::cmeans
c_CMeans(
x,
k = 2,
iter.max = 100,
dist = "euclidean",
method = "cmeans",
m = 2,
rate.par = NULL,
weights = 1,
control = list(),
verbose = TRUE,
...
)
x |
Input data |
k |
Integer: Number of clusters to get. Default = 2 |
iter.max |
Integer: Maximum number of iterations. Default = 100 |
dist |
Character: Distance measure to use: 'euclidean' or 'manhattan'. Default = "euclidean" |
method |
Character: "cmeans" - fuzzy c-means clustering; "ufcl": on-line update. Default = "cmeans" |
m |
Float (>1): Degree of fuzzification. Default = 2 |
rate.par |
Float (0, 1): Learning rate for the online variant. (Default = .3) |
weights |
Float (>0): Case weights |
control |
List of control parameters. See |
verbose |
Logical: If TRUE, print messages to console |
... |
Additional parameters to be passed to |
rtClust
object
E.D. Gennatas
Other Clustering:
c_DBSCAN()
,
c_EMC()
,
c_H2OKMeans()
,
c_HARDCL()
,
c_HOPACH()
,
c_KMeans()
,
c_MeanShift()
,
c_NGAS()
,
c_PAM()
,
c_PAMK()
,
c_SPEC()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.