classification_metrics | R Documentation |
Classification Metrics
classification_metrics(
true_labels,
predicted_labels,
predicted_prob = NULL,
binclasspos = 2L,
calc_auc = TRUE,
calc_brier = TRUE,
auc_method = "lightAUC",
sample = character(),
verbosity = 0L
)
true_labels |
Factor: True labels. |
predicted_labels |
Factor: predicted values. |
predicted_prob |
Numeric vector: predicted probabilities. |
binclasspos |
Integer: Factor level position of the positive class in binary classification. |
calc_auc |
Logical: If TRUE, calculate AUC. May be slow in very large datasets. |
calc_brier |
Logical: If TRUE, calculate Brier_Score. |
auc_method |
Character: "lightAUC", "pROC", "ROCR". |
sample |
Character: Sample name. |
verbosity |
Integer: Verbosity level. |
Note that auc_method = "pROC" is the only one that will output an AUC even if one or more predicted probabilities are NA.
ClassificationMetrics
object.
EDG
## Not run:
# Assume positive class is "b"
true_labels <- factor(c("a", "a", "a", "b", "b", "b", "b", "b", "b", "b"))
predicted_labels <- factor(c("a", "b", "a", "b", "b", "a", "b", "b", "b", "a"))
predicted_prob <- c(0.3, 0.55, 0.45, 0.75, 0.57, 0.3, 0.8, 0.63, 0.62, 0.39)
classification_metrics(true_labels, predicted_labels, predicted_prob)
classification_metrics(true_labels, predicted_labels, 1 - predicted_prob, binclasspos = 1L)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.