distributions | R Documentation |
Statistical Distributions
dmvnorm(
x,
mu = NULL,
Q,
detQ = determinant(Q, logarithm = TRUE)$modulus,
log = TRUE
)
dmvlnorm(
x,
mu = NULL,
Q,
detQ = determinant(Q, logarithm = TRUE)$modulus,
log = TRUE
)
dmvnorm_diff(x, y, mu, Q, b, log = TRUE, byrow = FALSE)
dmvlnorm_diff(x, y, mu, Q, log = TRUE, byrow = FALSE)
dnorm_diff(x, y, mu, tau, log = TRUE, byrow = FALSE)
dlnorm_diff(x, y, mu, tau, log = TRUE, byrow = FALSE)
dmatnorm(
x,
mu = NULL,
V,
U = NULL,
detV = determinant(V, logarithm = TRUE)$modulus,
detU = determinant(U, logarithm = TRUE)$modulus,
log = TRUE
)
dmatnorm_diff(x, y, mu, V, U = NULL, log = TRUE)
dlogitnorm(x, mu, sd, log = FALSE)
rdirich(n, alpha)
rdlnorm(n, meanlog = 0, sdlog = 1)
ddlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)
pdlnorm(x, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
rtruncexp(n, rate = 1, a = 0, b = Inf)
dtruncexp(x, rate = 1, a = 0, b = Inf, log = FALSE)
ptruncexp(q, rate = 1, a = 0, b = Inf, lower.tail = TRUE, log.p = FALSE)
qtruncexp(p, rate = 1, a = 0, b = Inf)
x , y |
vector of quantiles |
mu |
the mean. The default ( |
detQ , detU , detV |
Pre-computed log-determinants |
log |
Should the log-density be returned? |
b |
Bounds for the truncated exponential distribution or the multivariate normal canonical representation parameter. |
byrow |
Should the densities be summed (FALSE, the default) or returned separately by row (TRUE). |
tau , Q |
the precision (matrix) |
V , U |
the precision matrices for the matrix-normal distribution |
sd |
the standard deviation |
n |
Number of deviates to produce. |
alpha |
the Dirichlet parameter vector or matrix. |
meanlog , sdlog |
the parameters of the underlying log-normal distribution. |
lower.tail |
Should lower tail probabilities be returned (default) or upper? |
log.p |
Should the log be returned? |
rate |
the Exponential rate parameter. If zero, a normal distribution is used instead. If negative,
the problem is flipped and calculated using |
a |
Bounds for the truncated exponential distribution. |
q |
A quantile |
p |
A probability |
dmvnorm_diff(x, y, mu, Q)
is equivalent to (but usually twice as fast as)
dmvnorm(x, mu, Q) - dmvnorm(y, mu, Q)
. Likewise dmatnorm_diff
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.