welfare function [ w_{PA}(x) = px - c ] $x$: units sold lutz
$P_x:$ Normal distribution with 90\%-confidence interval: $[c_l,c_u]:=[1.5 \cdot 10^5, 3.0 \cdot 10^5]$
$p$: unit price
$c$: campaign costs
library(decisionSupport) n=100000 sales<-estimate("norm", 1.5e+05, 3.0e+05, variable="sales") p<-25 c<-5e+06 profitModel<-function(x) { list(Profit = p*x$sales - c) } individualEvpiResult<-individualEvpiSimulation(welfare=profitModel, currentEstimate=sales, numberOfModelRuns=n, functionSyntax="data.frameNames") # Show the simulation results: print(sort(summary(individualEvpiResult),decreasing=TRUE,along="Profit"))
hist(individualEvpiResult, breaks=100) hist(individualEvpiResult$current$mcResult$x$sales, breaks=100)
[ EL_{PA}=( c - p\mu) \Phi(\frac{1}{\sigma}(\frac{c}{p} - \mu)) + \frac{p\sigma^2 }{\sqrt{2 \pi}\sigma} e^{-\frac{1}{2 \sigma^2} (\frac{c}{p} - \mu)^2 } ] $\mu = \frac{c_l + c_u}{2}$
$\sigma = \frac{\mu - c_l}{\Phi^{-1}(0.95)}\approx \frac{c_u - c_l}{3.289707}$
mu<-(sales$marginal["sales","lower"] + sales$marginal["sales","upper"])/2 sigma<-(mu - sales$marginal["sales","lower"])/qnorm(0.95) elPa_calc<-(c - p*mu)*pnorm( (c/p - mu)/sigma ) + p*sigma^2 * dnorm(x=c/p,mean=mu,sd=sigma) print(elPa_calc) elPa_sim<-individualEvpiResult$current$elPa[["Profit"]] print(elPa_sim) all.equal(elPa_calc, elPa_sim, tolerance=2/sqrt(n), scale=elPa_calc, use.names=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.