library("devtools")
install_github("eldafani/intsvy")
library("intsvy")
The object dir specifies the directory path where the TIMSS 2019 data is located (eg. “/home/data”). Variable selection can be done with aid of timssg4.var.label(dir)
timss <- timssg4.select.merge(folder= dir,
student= c("ITSEX", "ASBG05A", "ASBG05B", "ASBG05C", "ASBG05D",
"ASBG03"),
home= c("ASBH14", "ASBH10", "ASDHEDUP", "ASDHOCCP", "ASBH17A", "ASBH17B"),
school= c("ACBG05B"),
countries = c("ARE", "CHL", "CAN", "HUN"))
timss.mean.pv(pvlabel=paste0("ASMMAT0", 1:5), by= "IDCNTRYL", data=timss)
## IDCNTRYL Freq Mean s.e. SD s.e
## 1 Canada 13653 511.56 1.86 76.24 1.19
## 2 Chile 4174 440.97 2.72 74.92 1.59
## 3 Hungary 4571 523.43 2.64 77.62 1.45
## 4 United Arab Emirates 25834 481.39 1.71 98.53 0.87
timss.mean.pv(pvlabel= paste0("ASMMAT0", 1:5), by= c("IDCNTRYL", "ITSEX"), data=timss)
## IDCNTRYL ITSEX Freq Mean s.e. SD s.e
## 1 Canada 1 6731 501.92 2.54 74.27 1.50
## 2 Canada 2 6884 520.79 1.95 76.96 1.32
## 3 Canada <NA> 38 496.52 12.87 73.07 10.20
## 4 Chile 1 2076 436.66 3.43 73.16 1.94
## 5 Chile 2 2098 445.21 3.13 76.37 2.18
## 6 Hungary 1 2212 517.63 3.03 75.67 1.93
## 7 Hungary 2 2359 528.82 3.06 79.02 1.79
## 8 United Arab Emirates 1 12885 477.43 2.53 95.42 1.07
## 9 United Arab Emirates 2 12879 485.60 2.27 101.43 1.30
## 10 United Arab Emirates <NA> 70 441.38 13.20 82.65 12.13
intsvy.ben.pv(pvnames= paste0("ASMMAT0", 1:5), cutoff = c(400, 475, 550, 625),
by= c("IDCNTRYL", "ITSEX"), data=timss, config = timss4_conf)
## IDCNTRYL ITSEX Benchmark Percentage Std. err.
## 1 Canada 1 At or above 400 90.94 0.76
## 2 Canada 1 At or above 475 64.75 1.37
## 3 Canada 1 At or above 550 26.60 1.37
## 4 Canada 1 At or above 625 4.33 0.70
## 5 Canada 2 At or above 400 93.79 0.58
## 6 Canada 2 At or above 475 72.52 1.14
## 7 Canada 2 At or above 550 36.61 1.23
## 8 Canada 2 At or above 625 8.38 0.82
## 9 Canada <NA> At or above 400 93.11 4.66
## 10 Canada <NA> At or above 475 62.04 10.31
## 11 Canada <NA> At or above 550 19.92 9.81
## 12 Canada <NA> At or above 625 5.50 4.61
## 13 Chile 1 At or above 400 68.78 2.04
## 14 Chile 1 At or above 475 30.42 1.85
## 15 Chile 1 At or above 550 6.01 0.72
## 16 Chile 1 At or above 625 0.43 0.13
## 17 Chile 2 At or above 400 71.95 1.81
## 18 Chile 2 At or above 475 35.61 1.69
## 19 Chile 2 At or above 550 8.57 0.85
## 20 Chile 2 At or above 625 0.77 0.21
## 21 Hungary 1 At or above 400 93.05 1.00
## 22 Hungary 1 At or above 475 71.58 1.72
## 23 Hungary 1 At or above 550 35.07 1.55
## 24 Hungary 1 At or above 625 7.33 0.94
## 25 Hungary 2 At or above 400 93.43 0.98
## 26 Hungary 2 At or above 475 75.56 1.56
## 27 Hungary 2 At or above 550 41.93 1.71
## 28 Hungary 2 At or above 625 10.63 0.94
## 29 United Arab Emirates 1 At or above 400 78.53 0.89
## 30 United Arab Emirates 1 At or above 475 51.68 1.28
## 31 United Arab Emirates 1 At or above 550 23.57 0.90
## 32 United Arab Emirates 1 At or above 625 5.79 0.45
## 33 United Arab Emirates 2 At or above 400 78.45 0.98
## 34 United Arab Emirates 2 At or above 475 55.26 1.04
## 35 United Arab Emirates 2 At or above 550 28.78 0.87
## 36 United Arab Emirates 2 At or above 625 7.94 0.40
## 37 United Arab Emirates <NA> At or above 400 73.02 7.56
## 38 United Arab Emirates <NA> At or above 475 37.10 7.11
## 39 United Arab Emirates <NA> At or above 550 7.80 4.02
## 40 United Arab Emirates <NA> At or above 625 0.32 0.53
intsvy.ben.pv(pvnames= paste0("ASMMAT0", 1:5), cutoff = c(400, 475, 550, 625),
by= c("IDCNTRYL", "ITSEX"), data=timss, config = timss4_conf)
## IDCNTRYL ITSEX Benchmark Percentage Std. err.
## 1 Canada 1 At or above 400 90.94 0.76
## 2 Canada 1 At or above 475 64.75 1.37
## 3 Canada 1 At or above 550 26.60 1.37
## 4 Canada 1 At or above 625 4.33 0.70
## 5 Canada 2 At or above 400 93.79 0.58
## 6 Canada 2 At or above 475 72.52 1.14
## 7 Canada 2 At or above 550 36.61 1.23
## 8 Canada 2 At or above 625 8.38 0.82
## 9 Canada <NA> At or above 400 93.11 4.66
## 10 Canada <NA> At or above 475 62.04 10.31
## 11 Canada <NA> At or above 550 19.92 9.81
## 12 Canada <NA> At or above 625 5.50 4.61
## 13 Chile 1 At or above 400 68.78 2.04
## 14 Chile 1 At or above 475 30.42 1.85
## 15 Chile 1 At or above 550 6.01 0.72
## 16 Chile 1 At or above 625 0.43 0.13
## 17 Chile 2 At or above 400 71.95 1.81
## 18 Chile 2 At or above 475 35.61 1.69
## 19 Chile 2 At or above 550 8.57 0.85
## 20 Chile 2 At or above 625 0.77 0.21
## 21 Hungary 1 At or above 400 93.05 1.00
## 22 Hungary 1 At or above 475 71.58 1.72
## 23 Hungary 1 At or above 550 35.07 1.55
## 24 Hungary 1 At or above 625 7.33 0.94
## 25 Hungary 2 At or above 400 93.43 0.98
## 26 Hungary 2 At or above 475 75.56 1.56
## 27 Hungary 2 At or above 550 41.93 1.71
## 28 Hungary 2 At or above 625 10.63 0.94
## 29 United Arab Emirates 1 At or above 400 78.53 0.89
## 30 United Arab Emirates 1 At or above 475 51.68 1.28
## 31 United Arab Emirates 1 At or above 550 23.57 0.90
## 32 United Arab Emirates 1 At or above 625 5.79 0.45
## 33 United Arab Emirates 2 At or above 400 78.45 0.98
## 34 United Arab Emirates 2 At or above 475 55.26 1.04
## 35 United Arab Emirates 2 At or above 550 28.78 0.87
## 36 United Arab Emirates 2 At or above 625 7.94 0.40
## 37 United Arab Emirates <NA> At or above 400 73.02 7.56
## 38 United Arab Emirates <NA> At or above 475 37.10 7.11
## 39 United Arab Emirates <NA> At or above 550 7.80 4.02
## 40 United Arab Emirates <NA> At or above 625 0.32 0.53
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.