bss.ci.nbPearson: Bayesian sample size using ACC or ALC criterion for the...

Description Usage Arguments Value

View source: R/bss.ci.nbPearson.R

Description

Bayesian sample size using ACC or ALC criterion for the negative binomial/Pearson Type VI model

Usage

1
2
bss.ci.nbPearson(crit, lam0, theta0, phi, w, rho, len = NULL,
  len.max = NULL, R = 1000, n0 = 1)

Arguments

crit

A characther string specifying the criterion. Criteria: "ACC" and "ALC".

lam0

A positive real number representing a shape parameter of the prior distribution.

theta0

A positive real number representing a shape parameter of the prior distribution.

phi

A positive real number representing a scale parameter of the prior distribution.

w

A positive real number representing the aliquot volume.

rho

A number in (0, 1). The probability of the credible interval is equal or greater than $1-rho$ depending on the criterion used.

len

A positive real number representing the length of the credible intervals in the ACC criterion.

len.max

A positive real number representing the maximum length of the credible intervals in the ALC criterion.

R

Number of replicates used in the simulation. Default is 1000.

n0

A positive integer representing the initial sample size in which the function will check the criterion. Default is 1.

Value

An integer representing the sample size.


eliardocosta/ssdet documentation built on Dec. 14, 2021, 6:27 a.m.