For example to start and get the BED industry data:
library(entrydatar) dt_firm <- get_bds_cut(1977, 2014, "firm", "all") dt_firm %>% as_tibble
# A tibble: 38 x 25 year firms estabs emp denom estabs_entry estabs_entry_rate estabs_exit estabs_exit_rate job_creation job_creation_births job_creation_continuers job_cr… job_c… job_de… job_des… job_des… job_de… job_d… net_jo… net_jo… real… firmd… firmd… firmd… <int> <int> <int> <int> <int> <int> <dbl> <int> <dbl> <int> <int> <int> <dbl> <dbl> <int> <int> <int> <dbl> <dbl> <int> <dbl> <dbl> <int> <int> <int> 1 1977 3417903 4153792 66091812 63987631 697749 17.1 526010 12.9 13919514 5858902 8060612 9.20 21.8 9.71e⁶ 3909657 5801496 6.10 15.2 4.21e⁶ 6.60 30.4 350748 352967 2.22e⁶ 2 1978 3470239 4222683 69670352 67833282 626813 15.0 548965 13.1 14062357 4556103 9506254 6.70 20.7 1.04e⁷ 4283093 6105123 6.30 15.3 3.67e⁶ 5.40 30.6 360442 362456 2.12e⁶ 3 1979 3598075 4376325 74016678 71830680 641788 14.9 471892 11.0 14443176 4998519 9444657 7.00 20.1 1.01e⁷ 3639187 6431992 5.10 14.0 4.37e⁶ 6.10 28.0 293251 294890 1.67e⁶ 4 1980 3606457 4398753 74749924 74284989 580305 13.2 524356 12.0 12718175 4567680 8150495 6.10 17.1 1.18e⁷ 3948087 7840218 5.30 15.9 9.30e⁵ 1.20 31.8 371483 373364 2.12e⁶ 5 1981 3566572 4341224 73539034 73601473 577646 13.2 609342 14.0 12783982 5219017 7564965 7.10 17.4 1.29e⁷ 5037764 7871097 6.80 17.5 -1.25e⁵ -0.100 34.8 365741 367682 2.13e⁶ 6 1982 3603989 4470714 74482223 73952271 679970 15.4 505221 11.5 13640132 6226777 7413355 8.40 18.4 1.26e⁷ 4052461 8527768 5.50 17.0 1.06e⁶ 1.40 34.0 289788 290402 1.78e⁶ 7 1983 3688193 4556830 72716864 73461522 570715 12.6 514341 11.4 12154727 4725016 7429711 6.40 16.5 1.36e⁷ 4234634 9409409 5.80 18.6 -1.49e⁶ -2.10 33.0 328482 330449 1.96e⁶ 8 1984 3836247 4722769 77386763 75061635 662923 14.3 503719 10.9 14882807 5379201 9503606 7.20 19.8 1.02e⁷ 3776750 6455800 5.00 13.6 4.65e⁶ 6.20 27.2 309350 310909 1.75e⁶ 9 1985 3975680 4876912 80896889 79558329 673580 14.0 530696 11.0 14585960 5364968 9220992 6.70 18.3 1.19e⁷ 4697213 7211629 5.90 15.0 2.68e⁶ 3.30 30.0 336927 339182 2.20e⁶ 10 1986 4085604 5010299 83467838 82133265 711750 14.4 559089 11.3 15485316 6244185 9241131 7.60 18.9 1.28e⁷ 4733570 8082600 5.80 15.6 2.67e⁶ 3.30 31.2 364004 365473 2.39e⁶ # ... with 28 more rows
Or for another cut, say establishments from age sic (see below for the exact code for each cut)
dt_estab <- get_bds_cut(1977, 2014, "establishment", "agesic") dt_estab %>% as_tibble
# A tibble: 3,249 x 28 year sic1 age4 Firms Estabs Emp Denom Estabs_Entry Estabs_Entry_Rate Estabs_Exit Estabs_Exit_Rate Job_Creation Job_Creation_Births Job_Cr… Job_C… Job_… Job_D… Job_D… Job_D… Job_… Job_… Net_Jo… Net_Job… Real… d_fl… firm… firm… firmd… <int> <int> <chr> <int> <int> <int> <int> <int> <dbl> <int> <dbl> <int> <int> <int> <dbl> <dbl> <int> <int> <int> <dbl> <dbl> <int> <dbl> <dbl> <int> <int> <int> <dbl> 1 1977 7 a) 0 7479 7591 64866 34491 7306 192 0 0 60750 60750 0 176 176 0 0 0 0 0 60750 176 0 0 NA NA NA 2 1977 7 l) Left Censored 28553 29385 210685 219312 0 0 7083 21.4 45107 0 45107 0 20.6 6.24e⁴ 28458 3.39e⁴ 13.0 28.4 - 17253 - 7.80 41.2 0 4996 5006 19331 3 1977 10 a) 0 3662 4440 77072 39356 4347 196 0 0 75432 75432 0 192 192 0 0 0 0 0 75432 192 0 0 NA NA NA 4 1977 10 l) Left Censored 16075 21008 723184 730692 0 0 3193 14.1 108765 0 108765 0 14.9 1.24e⁵ 50050 7.37e⁴ 6.80 16.9 - 15016 - 2.00 29.8 0 1949 1958 20198 5 1977 15 a) 0 83214 83723 372953 190165 81821 196 0 0 365576 365576 0 192 192 0 0 0 0 0 365576 192 0 0 NA NA NA 6 1977 15 l) Left Censored 300699 305193 3025448 3109120 0 0 56837 16.9 615519 0 615519 0 19.8 7.83e⁵ 261504 5.21e⁵ 8.40 25.2 -167345 - 5.40 39.6 0 38150 38173 174431 7 1977 20 a) 0 36857 39676 809767 420084 38800 196 0 0 779366 779366 0 186 186 0 0 0 0 0 779366 186 0 0 NA NA NA 8 1977 20 l) Left Censored 225993 277074 18516415 18433776 0 0 31186 10.6 1945895 0 1945895 0 10.6 1.78e⁶ 544425 1.24e⁶ 3.00 9.70 165279 0.900 19.4 0 21326 21409 252009 9 1977 40 a) 0 21528 25312 264124 135285 24749 196 0 0 257679 257679 0 190 190 0 0 0 0 0 257679 190 0 0 NA NA NA 10 1977 40 l) Left Censored 100563 138125 4039386 3972134 0 0 17462 11.9 722946 0 722946 0 18.2 5.88e⁵ 139602 4.49e⁵ 3.50 14.8 134505 3.40 29.6 0 11998 12059 74049 # ... with 3,239 more rows
st
metrononmetro
msa
agesz
ageisz
agesic
agemetrononmetro
(c) Erik Loualiche
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.