Description Usage Arguments Details Author(s) Examples
This function performs the training of the chosen regressor
1 2 3 4 |
df.train |
Training dataframe |
formula |
A formula of the form y ~ x1 + x2 + ... If users don't inform formula, the first column will be used as Y values and the others columns with x1,x2....xn |
preprocess |
pre process |
regressor |
Choice of regressor to be used to train model. Uses algortims names from Caret package. |
rsample |
resample method 'boot', 'boot632', 'optimism_boot', 'boot_all', 'cv', 'repeatedcv', 'LOOCV', 'LGOCV','none', 'oob', 'timeslice', 'adaptive_cv', 'adaptive_boot', 'adaptive_LGOCV' |
nfolds |
Number of folds to be build in crossvalidation |
repeats |
repeats |
index |
index |
cpu_cores |
Number of CPU cores to be used in parallel processing |
tune_length |
This argument is the number of levels for each tuning parameters that should be generated by train |
search |
search option "grid" or "random" |
metric |
metric used to evaluate model fit. For numeric outcome ("RMSE", "Rsquared) |
seeds |
seeds |
verbose |
verbose |
details
Elpidio Filho, elpidio@ufv.br
1 2 3 4 | ## Not run:
regression(df.train = df, regressor = "rf", metric = "Rsquared", seeds = 313)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.