knitr::opts_chunk$set(echo = TRUE)
$\$
$\$
library(fivethirtyeight) data(bechdel) domgross <- bechdel$domgross_2013 # plot a histogram of the data with the axes labeled hist(domgross, breaks = 30, ylab = "Frequency", xlab = "Gross domestic revenue ($)", main = " Movies gross domestic revenue") # calculate the mean and median (mean_gross <- mean(domgross, na.rm = TRUE)) (median_gross <- median(domgross, na.rm = TRUE)) # add lines to the histogram and the mean and median abline(v = mean_gross, col = "red") abline(v = median_gross, col = "blue")
$\$
We can calculate z-scores using the formula: $z_i = \frac{x_i - \bar{x}}{s}$
$\$
# the revenue for star wars star_wars_gross <- 1771682790 # calculate the z-score for star wars mean_gross <- mean(domgross, na.rm = TRUE) sd_gross <- sd(domgross, na.rm = TRUE) zscore_starwas <- (star_wars_gross - mean_gross)/sd_gross zscore_starwas # z-score of 13!
$\$
$\$
# movie quantiles quantile(domgross, c(.25, .75), na.rm = TRUE) # five number summary fivenum(domgross)
$\$
# load the dow data # SDS100::download_data("DowPrices.csv") dow <- read.csv("DowPrices.csv") # get the daily percent change percent_change <- dow$PercentChange # calculate the range where 95% of the data is expected if the data were normally distributed (mean_dow <- mean(percent_change)) (sd_dow <- sd(percent_change)) (normal_95 <- c(mean_dow - 2 * sd_dow, mean_dow + 2 * sd_dow)) # get the actual quantiles from the data quantile(percent_change, c(.025, .975)) # create a histogram of the data hist(dow$PercentChange, breaks = 200, xlim = c(-10, 10), main = "DOW daily % change", xlab = "Daily percent change") # get a five number summary fivenum(percent_change)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.