r sp_name
sp_names <- sp_name if(sp_name=="Quercus pubescens") sp_names <- c("Quercus pubescens", "Quercus pyrenaica") dfbai_SP = dfbai_sp[dfbai_sp$Species_ini %in% sp_names,] dfbatot_SP = dfbatot_sp[dfbatot_sp$Species %in% sp_names,] dfbarecr_SP = dfbarecr_sp[dfbarecr_sp$Species %in% sp_names,] dfbadead_SP = dfbadead_sp[dfbadead_sp$Species %in% sp_names,] dfNtot_SP = dfNtot_sp[dfNtot_sp$Species %in% sp_names,] dfNrecr_SP = dfNrecr_sp[dfNrecr_sp$Species %in% sp_names,] dfNdead_SP = dfNdead_sp[dfNdead_sp$Species %in% sp_names,] dfdbh_SP = dfdbh[dfdbh$Species_ini %in% sp_names,] dfh_SP = dfh[dfh$Species_ini %in% sp_names,]
Prediction ability for diameter increase (cm/yr) of surviving trees:
dfdbh_SP |> evaluation_stats() |> kbl() |> kable_styling()
Prediction ability for height increase (cm/yr) of surviving trees:
dfh_SP |> evaluation_stats() |> kbl() |> kable_styling()
Prediction ability for basal area increase due to growth (m2/ha/yr) of surviving trees:
dfbai_SP |> evaluation_stats() |> kbl() |> kable_styling()
Prediction ability for basal area decrease due to mortality (m2/ha/yr):
dfbadead_SP |> evaluation_stats() |> kbl() |> kable_styling()
Prediction ability for density decrease due to mortality (ind/ha/yr):
dfNdead_SP |> evaluation_stats() |> kbl() |> kable_styling()
Prediction ability for basal area increase due to ingrowth (m2/ha/yr):
dfbarecr_SP |> evaluation_stats() |> kbl() |> kable_styling()
Prediction ability for density increase due to ingrowth (ind/ha/yr):
dfNrecr_SP |> evaluation_stats() |> kbl() |> kable_styling()
Prediction ability for overall basal area changes (including growth, mortality and ingrowth):
dfbatot_SP |> evaluation_stats() |> kbl() |> kable_styling()
Predictive capacity plots (IFN2-IFN4):
dfbatot_bas <- dfbatot_SP |> filter(transpirationMode == "Granier", period == "IFN24") dfbatot_adv <- dfbatot_SP |> filter(transpirationMode == "Sperry", period == "IFN24") plot_scatter_bai(dfbatot_bas, dfbatot_adv, quantity = "basal area change", xylim = c(-0.5,2), errorlim = c(-2,2))
Relationship between basal area changes and climatic variables (MAT and P/PET; IFN2-IFN4):
plot_cov_clim_bai(dfbatot_bas, dfbatot_adv, quantity = "Basal area change", ylim = c(-0.5,2), errorlim = c(-2,2))
Spatial distribution of errors (IFN2-IFN4):
p1<-bai_error_map(dfbatot_bas)+labs(title="Basic sub-model") p2<-bai_error_map(dfbatot_adv)+labs(title="Advanced sub-model") plot_grid(p1+theme(legend.position = "none"),p2+theme(legend.position = "none"), get_legend(p1),nrow=1, rel_widths = c(1,1,0.25))
Prediction ability for overall density changes (including growth, mortality and ingrowth):
dfNtot_SP |> evaluation_stats() |> kbl() |> kable_styling()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.