knitr::opts_chunk$set(echo = FALSE, error = FALSE, message = FALSE, warning = FALSE)
maxyr.nextchunk<-as.numeric(paste0(ceiling(((maxyr)/10)), ifelse(substr(maxyr, start = nchar((maxyr)), stop = nchar((maxyr-29)))<5, 5, 0))) baseyr.nextchunk<-as.numeric(paste0(floor(maxyr.nextchunk/10), ifelse(substr(maxyr.nextchunk, start = nchar(maxyr.nextchunk), stop = nchar(maxyr.nextchunk))>=5, 5, 0))) minyr.data.nextchunk<-as.numeric(paste0(floor((maxyr.nextchunk-24)/10), ifelse(substr(maxyr.nextchunk, start = nchar((maxyr.nextchunk-24)), stop = nchar((maxyr.nextchunk-24)))>=5, 6, 1)))
Below are tables which show fishery value estimates at both national and regional levels based on commercial fishery landing data. The tables show inflation adjusted (i.e. real) landings value over a 20 year time period by region, along with the associated regional price indices used to derive the real values. In addition, a third table presents national nominal value, real value and the price index for shellfish, finfish and total landings. Price indices were calculated as chained Törnqvist indices over a 25 year period, which were then converted to a base year index with r baseyr
as the base time period. The data window and base year will be adjusted every 5 years (such that in the r maxyr.nextchunk
edition of the report, the base year will be r baseyr.nextchunk
and the minimum year of the data used in the analysis will be r minyr.data.nextchunk
to ensure consistency between editions of the Fisheries Economics of the US report.
dir.in<-dirname(getwd()) dir.data<-dir.rawdata<-paste0(dir.in, "/data/") dir.output<-paste0(dir.in, "/output/") dir.out<-paste0(dir.output, "ProductivityIndex_", Sys.Date(), "/") dir.scripts<-paste0(dir.in, "/rscripts/") dir.analyses<-paste0(dir.out, "/analyses/") ProdI.Report<-paste0(dir.scripts, "ProductivityIndex_Report.rmd") # aaa<-unlist(unique(lapply(fold0, `[[`, 1))) # library(devtools) # devtools::install_github("emilyhmarkowitz/FishEconProdOutput", dependencies = TRUE) library(FishEconProdOutput) ### SOURCE FILES AND DATA ##### #Load data for this section #Functions specific to this section ProdI.Funct<-paste0(dir.scripts, "ProductivityIndex_Functions.R") source(ProdI.Funct) aa<-list.files(path = paste0(dir.analyses), pattern = paste0(minyr, "To", maxyr, "_FSFEUS"), full.names = TRUE) bb<-list.files(path = paste0(aa, "/outputtables/"), full.names = TRUE, pattern = "000_All")
\newpage
r minyr
-r maxyr
(Implicit Quantity in r baseyr
$ Million)a<-data.frame(Year = minyr:maxyr) for (i in 2:length(reg.order)){ temp<-read.xlsx(file = bb[grep(pattern = "_FinalOutput", x = bb)], sheetName = reg.order[i]) temp<-temp[temp$Year %in% c(minyr:maxyr), ] a0<-data.frame(temp[,names(temp) %in% paste0("Q_", idx)]) names(a0)<-reg.order[i] a<-cbind.data.frame(a, a0) } # names(a)<-c("Year", reg.order[2:length(reg.order)]) if (NortheastTFs == T){ a$Northeast<-NULL } # names(a)<-gsub(pattern = " \\(Hawai`i\\)", replacement = "", x = names(a)) a[,2:ncol(a)]<-round(x = a[,2:ncol(a)]/1e6, digits = 2) # a<-a[order(a$Year, decreasing = TRUE),] if (designflowin %in% F){ # print(a %>% # knitr::kable(row.names = T, booktabs = T)) a %>% # tibble::rownames_to_column() %>% flextable() %>% set_header_labels(rowname = "") %>% # add_header_row(values = c("", "Group 1", "Group 2"), # colwidths = c(1, 2, 2)) %>% theme_box()# %>% autofit() } write.csv(x = a, file = paste0(dir.temp, "T1_RegionalLandingValues.csv"))
\newpage
r minyr
-r maxyr
(r baseyr
= 1)a<-data.frame(Year = minyr:maxyr) for (i in 2:length(reg.order)){ temp<-read.xlsx(file = bb[grep(pattern = "_FinalOutput", x = bb)], sheetName = reg.order[i]) temp<-temp[temp$Year %in% c(minyr:maxyr), ] a0<-data.frame(temp[,names(temp) %in% paste0("PI_", idx)]) names(a0)<-reg.order[i] a<-cbind.data.frame(a, a0) } if (NortheastTFs == T){ a$Northeast<-NULL } names(a)<-gsub(pattern = " \\(Hawai`i\\)", replacement = "", x = names(a)) a[,2:ncol(a)]<-round(x = a[,2:ncol(a)], digits = 2) # a<-a[order(a$Year, decreasing = TRUE),] if (designflowin %in% F){ # print(a %>% # knitr::kable(row.names = T, booktabs = T)) a %>% # tibble::rownames_to_column() %>% flextable() %>% set_header_labels(rowname = "") %>% # add_header_row(values = c("", "Group 1", "Group 2"), # colwidths = c(1, 2, 2)) %>% theme_box()# %>% autofit() } write.csv(x = a, file = paste0(dir.temp, "T2_RegionalPriceIndex.csv"))
\newpage
r baseyr
$ Million), Price Index, (r baseyr
= 1), and Landing Values (Implicit Quantity in r baseyr
$ Million), r minyr
-r maxyr
Date0 = Sys.Date() yr = minyr maxyr = maxyr folderpattern = "FSFEUS" outputrun<-list.files(path = dir.output, pattern = as.character(Date0), full.names = TRUE) a<-list.files(path = (list.files(path = paste0(outputrun, "/analyses/"), full.names = TRUE, pattern = paste0(yr, "To", maxyr, "_", folderpattern))), pattern = "outputtables", full.names = TRUE, ignore.case = TRUE) b<-a[(grepl(pattern =paste0(yr, "To"), x = a))] b<-list.files(path = b, pattern = "_US_", full.names = TRUE) b<-b[grep(pattern = "_AllData", x = b)] a<-read.csv(file = b) a<-a[a$Year %in% c(minyr:maxyr), ] a<-a[,c("Year", "cat", "v", paste0("PI_", idx),paste0("Q_", idx))] a<-dplyr::rename(a, PI = paste0("PI_", idx), Q = paste0("Q_", idx), V = "v") a$PI<-round(x = a$PI, digits = 2) a$Q<-round(x = a$Q/1e6, digits = 2) a$V<-round(x = a$V/1e6, digits = 2) a.pi<-spread(a[!(names(a) %in% c("V", "Q"))], cat, PI) names(a.pi)[-1]<-paste0(names(a.pi)[-1], "_PI") a.q<-spread(a[!(names(a) %in% c("PI", "V"))], cat, Q) names(a.q)[-1]<-paste0(names(a.q)[-1], "_Q") a.v<-spread(a[!(names(a) %in% c("PI", "Q"))], cat, V) names(a.v)[-1]<-paste0(names(a.v)[-1], "_V") a<-left_join(a.pi, a.q, by = c("Year")) a<-left_join(a, a.v, by = c("Year")) # a<-a[order(a$Year, decreasing = TRUE),] # rownames(a)<-a$Year # a$Year<-NULL a<-a[,match(x = c("Year", names(a)[grep(pattern = "_V", x = names(a), ignore.case = T)], names(a)[grep(pattern = "_PI", x = names(a), ignore.case = T)], names(a)[grep(pattern = "_Q", x = names(a), ignore.case = T)]), names(a))] a<-a[,match(x = c("Year", names(a)[grep(pattern = "Total", x = names(a))], names(a)[grep(pattern = "fin", x = names(a), ignore.case = T)], names(a)[grep(pattern = "Shell", x = names(a), ignore.case = T)]), names(a))] typology<-data.frame(col_keys = names(a), colB = unlist(c("", lapply(X = strsplit(x = names(a)[-1], split = "_"), `[[`, 1) )), colA = unlist(c("Year", lapply(X = strsplit(x = names(a)[-1], split = "_"), `[[`, 2))) ) typology$colA[typology$colA %in% "PI"]<-"Price Index" typology$colA[typology$colA %in% "Q"]<-"Real Value" typology$colA[typology$colA %in% "V"]<-"Nominal Value" ft <- flextable(a, col_keys = names(a) ) ft<-set_header_df(ft, mapping = typology, key = "col_keys" ) ft<-merge_h(ft, part = "header") ft<-merge_v(ft, part = "header") ft<-ft %>% theme_box() %>% autofit() %>% empty_blanks() if (designflowin %in% F){ ft } write.csv(x = a, file = paste0(dir.temp, "T3_NationalLandingValuesAndPriceIndex.csv"))
\newpage
r baseyr
$ Million), r minyr
-r maxyr
# a<-data.frame(Year = minyr:maxyr) temp<-read.xlsx(file = bb[grep(pattern = "_AllData", x = bb)], sheetName = reg.order[1]) a<-temp[, c("Year", "cat", paste0("Q_", idx))] a<-a[a$Year %in% c(minyr:maxyr), ] a[, paste0("Q_", idx)]<-round(x = a[, paste0("Q_", idx)]/1e6, digits = 2) names(a)<-c("Year", "Category", "val") # a<-a[,match(table = names(a), # x = c("Year","Total", # "Finfish", "Shellfish"))] # # # a0<-a # a <- gather(a0, Category, val, names(a0)[-1], factor_key=TRUE) # a$cat<-a$Category temp0<-a g<-plotnlines(dat = temp0, titleyaxis = paste0("Implicit Quantity in [", minyr,"] $ Million"), title0 = "") if (designflowin %in% F){ g } # counter<-funct_counter(counter) ggsave(g, filename = paste0(dir.temp, "G1_NationalLandingValues.pdf"), width = 4, height = 4)
\newpage
r baseyr
= 1), r minyr
-r maxyr
a<-data.frame(Year = minyr:maxyr) for (i in 2:length(reg.order)){ temp<-read.xlsx(file = bb[grep(pattern = "_FinalOutput", x = bb)], sheetName = reg.order[i]) temp<-temp[temp$Year %in% c(minyr:maxyr), ] a<-cbind.data.frame(a, temp[,names(temp) %in% paste0("QI_", idx)]) } names(a)<-c("Year", reg.order[2:length(reg.order)]) a0<-a a <- gather(a0, Category, val, names(a0)[-1], factor_key=TRUE) a$cat<-a$Category temp0<-a g<-plotnlines(dat = temp0, titleyaxis = paste0("Quantity Index (", minyr," = 1)"), title0 = "") if (designflowin %in% F){ g } ggsave(g, filename = paste0(dir.temp, "G2_TotalQuantityIndexForEachRegion.pdf"), width = 4, height = 4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.