| MultiStart | R Documentation |
Given a dark object, obj, this function repeatedly optimises the parameters in the vicinity of the seed array. The width of the search is dependent upon the value of spread.
MultiStart(obj, repeats, draw, spread, debug)
obj |
A dark object containing at least;
| |||||||
repeats |
The number of times the algorithm is repeated | |||||||
draw |
A flag indicating whether a figure should be drawn. | |||||||
spread |
The amount by which the seed array should be varied. A larger value gives a greater range of possible starting points. | |||||||
debug |
A flag used in debugging the software. |
To reduce the possibility of selecting non-optimal parameter estimates, the optimisation is repeated in the region of initial estimates. The
Returns a list;
time |
times of threshold setting |
out$thrs |
observed thresholds |
out$resid |
residuals |
out$fit |
optimal fitted values |
out$thet |
seed parameters if test data |
out$sse |
sum of squared residuals if test data |
out$data |
source of the data |
out$opt |
optimal parameter estimates of the chosen model |
out$Mod |
name of the optimal model |
out$Pn |
the number of parameters needed to describe the data |
out$AIC |
array of AICc scores |
out$val |
calculated sum of squared residuals |
out$R2 |
the coefficient of determination |
out$warning |
if none of the nearby values converge |
out$call |
updates the function call label |
Jeremiah MF Kelly
Mumac Ltd, SK7 6NR, GB
Nelder, J.A.; Mead, R. 1965: A simplex for function minimization. Comput. J. 7, 308-313
set.seed(1234)
Time<- seq(0,20)
tmp<- TestData(Time)
P<-Start(tmp,1000)
MSC<-ModelSelect(tmp, P)
tmp2<-BestFit(tmp, MSC)
tmp3<-MultiStart(tmp2,10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.