options(tinytex.verbose = TRUE) source('combinedLaTeXtableR.R', encoding = 'UTF-8') source('combinedLaTeXtableR.R', encoding = 'UTF-8') source('combinedLaTeXtableR.R', encoding = 'UTF-8') require(pscl, quietly = TRUE); require(tidyr, quietly = TRUE); require(MASS, quietly = TRUE); require(brms, quietly = TRUE); require(magrittr, quietly = TRUE); require(knitr, quietly = TRUE); require(dplyr, quietly = TRUE); require(htmlTable, quietly = TRUE); require(tibble, quietly = TRUE); require(psych, quietly = TRUE); require(stats, quietly = TRUE); require(MplusAutomation, quietly = TRUE); require(papaja, quietly = TRUE); require(Hmisc, quietly = TRUE); require(pscl, quietly = TRUE) homepath <- paste0('C:/Users/', Sys.getenv('USERNAME')) #### Function to read in files #### dataRead <- function(homepath, file) eval(parse(text = paste0('read.csv("', homepath, file, ')'))) n3.a1 <- dataRead(homepath, file = '/Box Sync/Research/0 Data 0/NESARCIII/nesarcA1final.csv", na.strings = (c("9999", "NA")))') n3.a1$CASEID <- as.character(n3.a1$CASEID) n3 <- dataRead(homepath, file = '/Box Sync/Research/0 Data 0/NESARCIII/n3csv.csv", na.strings = (c("9999", "NA")))') sf12 <- read.csv('sf12_n3.csv', na.strings = '9') colnames(sf12)[1] <- 'CASEID' sf12$calm <- sf12$N1Q33A sf12$depressed <- sf12$N1Q33C sf12$accomplishedless <- sf12$N1Q32A sf12$carefulless <- sf12$N1Q32B sf12$GeneralHealth <- sf12$N1Q25 sf12$gh <- ifelse(sf12$N1Q25 == levels(sf12$N1Q25)[1], 1, ifelse(sf12$N1Q25 == levels(sf12$N1Q25)[2], 2, ifelse(sf12$N1Q25 == levels(sf12$N1Q25)[3], 3, ifelse(sf12$N1Q25 == levels(sf12$N1Q25)[4], 4, 5)))) diagnoses <- read.csv('diagnoses.csv'); diagnoses <- diagnoses[, -1] #impairment <- read.csv('impairment.csv'); impairment <- impairment[, -1] outcomes <- read.csv('outcomes.csv'); outcomes <- outcomes[, -1] outcomes <- outcomes[, -which(names(outcomes) %in% names(diagnoses))] outcomes <- data.frame(n3.a1$CASEID, outcomes); colnames(outcomes)[1] <- 'CASEID' outcomes <- cbind(sf12[sf12$CASEID %in% outcomes$CASEID, -1]) #### Drinking Data Cleaning #### nesarc3 <- dataRead(homepath, file = '/Box Sync/Research/0 Data 0/NESARCIII.csv")') nesarc3.a1 <- nesarc3[nesarc3$CASEID %in% n3.a1$CASEID, ] rm(nesarc3) ## MAXDRINKS MAXDRINKS <- ifelse(is.na(nesarc3.a1$S2AQ4C), 0, ifelse(nesarc3.a1$S2AQ4C==99, NA, nesarc3.a1$S2AQ4C)) ## FREQENCY DRINKING DRINKFREQ <- ifelse(is.na(nesarc3.a1$S2AQ4A), 0, ifelse(nesarc3.a1$S2AQ4A==99, NA, 11-nesarc3.a1$S2AQ4A)) ## USUAL AMOUNT DRINKING USUALAMT <- ifelse(is.na(nesarc3.a1$S2AQ4B), 0, ifelse(nesarc3.a1$S2AQ4B==99, NA, nesarc3.a1$S2AQ4B)) ## FREQENCY MAX FREQMAX <- ifelse(is.na(nesarc3.a1$S2AQ4E), 0, ifelse(nesarc3.a1$S2AQ4E==99, NA, 11-nesarc3.a1$S2AQ4E)) #HOW OFTEN DRANK LARGEST NUMBER OF DRINKS IN A SINGLE DAY IN LAST 12 MONTHS ## BINGING WITH DifFERENT CUTOFFS FOR MEN AND WOMEN BINGE <- ifelse((nesarc3.a1$SEX==1 & is.na(nesarc3.a1$S2AQ4H)), 0, ifelse((nesarc3.a1$SEX==1 & nesarc3.a1$S2AQ4H==99), NA, ifelse(nesarc3.a1$SEX==1, 11-nesarc3.a1$S2AQ4H, ifelse((nesarc3.a1$SEX==2 & is.na(nesarc3.a1$S2AQ4F)), 0, ifelse((nesarc3.a1$SEX == 2 & nesarc3.a1$S2AQ4F == 99), NA, 11-nesarc3.a1$S2AQ4F))))) ## HOW OFTEN INTOXICATED INTOX <- ifelse(is.na(nesarc3.a1$S2AQ9), 0, ifelse(nesarc3.a1$S2AQ9==99, NA, 11-nesarc3.a1$S2AQ9)) ## FREQUENCY OF EXCEEDING DAILY DRINKING LIMITS #if (is.na(nesarc3.a1$FEXMAX)) FREQEX <- 0 else if (nesarc3.a1$FEXMAX==99) FREQEX <- NA else FREQEX <- FEXMAX #### CREATE DRINKING + OUTCOME DF #### drinking <- data.frame(MAXDRINKS, DRINKFREQ, USUALAMT, FREQMAX, BINGE, INTOX #, FREQEX ) outcomes <- cbind(outcomes, drinking)
## Factors and Models factorModelNameVector <- c('dsm5', 'dysphoria', 'dysphoricarousal', 'anhedonia', 'externalizing', 'hybrid') modelFactorNamesList <- list(c('INTRUSIONS', 'AVOIDANCE', 'COGMOOD', 'HYPERAROUSAL'), c('INTRUSIONS', 'AVOIDANCE', 'DYSPHORIA', 'HYPERAROUSAL'), c('INTRUSIONS', 'AVOIDANCE', 'DYSPHORIA', 'DYSPHORIC_AROUSAL', 'ANXIOUS_AROUSAL'), c('INTRUSIONS', 'AVOIDANCE', 'NEGAFF', 'ANHEDONIA', 'DYSPHORIC_AROUSAL', 'ANXIOUS_AROUSAL'), c('INTRUSIONS', 'AVOIDANCE', 'NUMBING', 'EXTERNALIZING', 'DYSPHORIC_AROUSAL', 'ANXIOUS_AROUSAL'), c('INTRUSIONS', 'AVOIDANCE', 'NEGAFF', 'ANHEDONIA', 'EXTERNALIZING', 'DYSPHORIC_AROUSAL', 'ANXIOUS_AROUSAL')) names(modelFactorNamesList) <- factorModelNameVector ## Outcomes sf12_outcomes <- c('gh', 'calm', 'depressed', 'accomplishedless', 'carefulless') #dx_outcomes <- c('pyptsd', 'lptsd', 'pymdepind', 'lmdepind', 'pymddisorder' , 'lmddisorder', 'ldysind', 'bpddx1', 'pygadind', 'lgadind', 'pyspeind', 'lspeind', 'pypanicind', 'lpanicind', 'lifeaud5', 'pyaud5', 'lnicdep5', 'lmaud5') dx_outcomes <- c('pyptsd', 'lptsd', 'pymddisorder' , 'lmddisorder', 'bpddx1', 'pygadind', 'lgadind', 'pyspeind', 'lspeind', 'pypanicind', 'lpanicind', 'pyaud5', 'lifeaud5', 'lmaud5', 'lnicdep5') dvs <- outcomes #drinking_outcomes <- c('numwhendrink', 'agefirstdrink', 'freqyearlydrunk') drinking_outcomes <- c('MAXDRINKS', 'DRINKFREQ', 'USUALAMT', #'FREQMAX', 'BINGE', 'INTOX' #, 'FREQEX' ) #outcomeNameVector <- c('SF-12 General Health', 'SF-12 Calm or Peaceful', 'SF-12 Down or Depressed', 'SF-12 Less Accomplished', 'SF-12 Less Careful', 'Past Year PTSD', 'Lifetime PTSD', 'Past Year MDD', 'Life MDD', 'BPD', 'Past Year GAD', 'Life GAD', 'pyspeind', 'lspeind', 'Past Year Panic', 'Life Panic', 'Past Year AUD', 'Life AUD', 'lmaud5', 'Life Nicotine Dependence', 'Number Typical Drinks', 'Age 1st Drink', 'Intoxication Frequency') outcomeNameVector <- c('SF-12 General Health', 'SF-12 Calm or Peaceful', 'SF-12 Down or Depressed', 'SF-12 Less Accomplished', 'SF-12 Less Careful', 'Past Year PTSD', 'Lifetime PTSD', 'Past Year MDD', 'Life MDD', 'BPD', 'Past Year GAD', 'Life GAD', 'pyspeind', 'lspeind', 'Past Year Panic', 'Life Panic', 'Past Year AUD', 'Life AUD', 'lmaud5', 'Life Nicotine Dependence', 'Maximum Drinks', 'Drinking Frequency', 'Usual Drink Number', 'Frequency Drink Maximum', 'Binge Frequency', 'Intoxication Frequency', 'Frequency Exceed Daily Limits') #names(outcomeNameVector) <- c('gh', 'calm', 'depressed', 'accomplishedless', 'carefulless', 'lptsd', 'pyptsd', 'laud5', 'pyaud5', 'numwhendrink', 'agefirstdrink', 'freqyearlydrunk.1') names(outcomeNameVector) <- c(sf12_outcomes, dx_outcomes, drinking_outcomes)
lca_cprob <- read.csv('lca_cprob_nesarc.csv') lca <- data.frame(lca_cprob, outcomes, diagnoses) #### BCFA FScores #### #fscoresMakeR <- function() { for (m in 1:length(factorModelNameVector)) { model <- factorModelNameVector[m] factors <- modelFactorNamesList[[model]] # factors in structural model filePath <- paste0(getwd(), '/FScores_N3_BCFA_', length(factors), '_', model, '.csv') fscores <- read.delim(file = filePath, header = FALSE, sep = '', na.strings = '*') #fscores <- eval(parse(text = paste0('fscores_cfa_', model))) # Mplus fscores output fNames <- seq(from = -1*(dim(fscores)[2] - 4), by = 5, length.out = length(factors)) # negative numbers so can count up starting with 5th from end of df (last factor score) is reference point, fNames <- fNames[(order(fNames*-1))] # then reorder by *-1 fNames <- gsub(fNames, pattern = '-', replacement = 'V') # capitalize on negative signs left over to easily replace with "V" to make variable names data <- data.frame(fscores[, fNames]) colnames(data) <- factors eval(envir = globalenv(), parse(text = paste0('data_bcfa_', model, ' <- data'))) } #} #### Bifactor FScores #### #fscoresMakeR_bf <- function() { for (m in 1:length(factorModelNameVector)) { #options(browser()) model <- factorModelNameVector[m] factors <- modelFactorNamesList[[model]] # factors in structural model filePath <- paste0(getwd(), '/FScores_N3_BF_', length(factors), '_', model, '.csv') factors_bf <- c('GENERAL', modelFactorNamesList[[model]]) # if bifactor fscores_bf <- read.delim(file = filePath, header = FALSE, sep = '', na.strings = '*') #fscores_bf <- eval(parse(text = paste0('fscores_cfa_', model))) # Mplus fscores output fNames_bf <- seq(from = -1*(dim(fscores_bf)[2] - 4), by = 5, length.out = length(factors_bf)) # negative numbers so can count up starting with 5th from end of df (last factor score) is reference point, fNames_bf <- fNames_bf[(order(fNames_bf*-1))] # then reorder by *-1 fNames_bf <- gsub(fNames_bf, pattern = '-', replacement = 'V') # capitalize on negative signs left over to easily replace with "V" to make variable names data <- data.frame(fscores_bf[, fNames_bf]) colnames(data) <- factors_bf eval(envir = globalenv(), parse(text = paste0('data_bf_', model, ' <- data'))) } #} # fscoresMakeR() # fscoresMakeR_bf() for (m in 1:length(factorModelNameVector)) { eval(envir = globalenv(), parse(text = paste0('data_bcfa_', factorModelNameVector[m], ' <- data.frame(dvs, data_bcfa_', factorModelNameVector[m], ')'))) } rm(fscores) for (m in 1:length(factorModelNameVector)) { eval(envir = globalenv(), parse(text = paste0('data_bf_', factorModelNameVector[m], ' <- data.frame(dvs, data_bf_', factorModelNameVector[m], ')'))) } rm(fscores_bf) #### Frequentist CFA FScores #### filepathcfa <- gsub(x = paste0(getwd(), '/FScores_N3_'), pattern = '/', replacement = '//') for (m in 1:length(factorModelNameVector)) { model <- factorModelNameVector[m] factors <- modelFactorNamesList[[model]] # factors in structural model factors_se <- rep(paste0(modelFactorNamesList[[model]], '_se')) for(f in 1:length(factors)) c(factors[f], factors_se[f]) filePath <- paste0(model, '.csv') eval(parse(text = paste0('fscores_', model, ' <- read.delim(file = \"', filepathcfa, filePath, '\", header = FALSE, sep = \'\', na.strings = \'*\')'))) fscores <- eval(parse(text = paste0('fscores_', model))) # Mplus fscores output fscores <- fscores[, -c(1:20)] # take out symptom columns fscores <- fscores[, c(seq(from = 1, to = dim(fscores)[2], by = 2))] # drop factor SE cols; leave just factors scores colnames(fscores) <- factors eval(envir = globalenv(), parse(text = paste0('data_cfa_', factorModelNameVector[m], ' <- data.frame(dvs , fscores)'))) } #### Write FScores to csv #### for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('write.csv(data_bcfa_', factorModelNameVector[m], ', \'data_bcfa_', factorModelNameVector[m], '.csv\')'))) } for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('write.csv(data_bf_', factorModelNameVector[m], ', \'data_bf_', factorModelNameVector[m], '.csv\')'))) } for (m in 1:length(factorModelNameVector)) { dims <- (20 + 2*length(modelFactorNamesList[[m]])) cols <- c(1:dims) eval(parse(text = paste0('write.csv(data_cfa_', factorModelNameVector[m], ', \'data_cfa_', factorModelNameVector[m], '.csv\', col.names = cols)'))) }
for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data_cfa_', factorModelNameVector[m], ' <- read.csv(\'data_cfa_', factorModelNameVector[m], '.csv\')'))) } for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data_bcfa_', factorModelNameVector[m], ' <- read.csv(\'data_bcfa_', factorModelNameVector[m], '.csv\')'))) } for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data_bf_', factorModelNameVector[m], ' <- read.csv(\'data_bf_', factorModelNameVector[m], '.csv\')'))) }
for (y in 1:length(drinking_outcomes)) { dv <- drinking_outcomes[y] for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data <- data_cfa_', factorModelNameVector[m]))) dv <- paste0('data_cfa_', factorModelNameVector[m], '$', dv) eval(envir = globalenv(), parse(text = paste0(drinking_outcomes[y], '_cfa_', factorModelNameVector[m], '_results <- printResults(analysis = \'cfa\', outcomeVar = drinking_outcomes[', y, '], data = data, modelNum = ', m, ')'))) } }
## CFA cat('Frequentist Confirmatory Factor Analysis SF-12 Summary Table') for (y in 1:length(sf12_outcomes)) { for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data <- data_cfa_', factorModelNameVector[m]))) eval(envir = globalenv(), parse(text = paste0(sf12_outcomes[y], '_cfa_', factorModelNameVector[m], ' <- summaryTableFx(family = \'gaussian\', analysis = \'cfa\', outcomeVar = sf12_outcomes[', y, '], data = data, modelNum = ', m, ')'))) } } ## BCFA cat('Bayesian Confirmatory Factor Analysis Short Form Health Survey (SF-12) Summary Tables') for (y in 1:length(sf12_outcomes)) { for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data <- data_bcfa_', factorModelNameVector[m]))) eval(envir = globalenv(), parse(text = paste0(sf12_outcomes[y], '_bcfa_', factorModelNameVector[m], ' <- summaryTableFx(family = \'gaussian\', analysis = \'bcfa\', outcomeVar = sf12_outcomes[', y, '], data = data, modelNum = ', m, ')'))) } } cat('Bifactor Analysis Short Form Health Survey (SF-12) Summary Tables') ## Bi-Factor for (y in 1:length(sf12_outcomes)) { for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data <- data_bf_', factorModelNameVector[m]))) eval(envir = globalenv(), parse(text = paste0(sf12_outcomes[y], '_bf_', factorModelNameVector[m], ' <- summaryTableFx(family = \'gaussian\', analysis = \'bf\', outcomeVar = sf12_outcomes[', y, '], data = data, modelNum = ', m, ')'))) } }
cat('Frequentist Confirmatory Factor Analysis and Psychiatric Diagnoses Summary Tables') for (y in 1:length(dx_outcomes)) { for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data <- data_cfa_', factorModelNameVector[m]))) data <- data.frame(data, diagnoses) eval(envir = globalenv(), parse(text = paste0(dx_outcomes[y], '_cfa_', factorModelNameVector[m], ' <- summaryTableFx(family = \'binomial\', analysis = \'cfa\', outcomeVar = dx_outcomes[', y, '], data = data, modelNum = ', m, ')'))) } } cat('Bayesian Confirmatory Factor Analysis and Psychiatric Diagnoses Summary Tables') for (y in 1:length(dx_outcomes)) { for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data <- data_bcfa_', factorModelNameVector[m]))) data <- data.frame(data, diagnoses) eval(envir = globalenv(), parse(text = paste0(dx_outcomes[y], '_bcfa_', factorModelNameVector[m], ' <- summaryTableFx(family = \'binomial\', analysis = \'bcfa\', outcomeVar = dx_outcomes[', y, '], data = data, modelNum = ', m, ')'))) } } cat('Biactor Analysis and Psychiatric Diagnoses Summary Tables') for (y in 1:length(dx_outcomes)) { for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data <- data_bf_', factorModelNameVector[m]))) data <- data.frame(data, diagnoses) eval(envir = globalenv(), parse(text = paste0(dx_outcomes[y], '_bf_', factorModelNameVector[m], ' <- summaryTableFx(family = \'binomial\', analysis = \'bf\', outcomeVar = dx_outcomes[', y, '], data = data, modelNum = ', m, ')'))) } }
cat('Frequentist Confirmatory Factor Analysis and Alcohol Validators Summary Tables') for (y in 1:length(drinking_outcomes)) { dv <- drinking_outcomes[y] for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data <- data_cfa_', factorModelNameVector[m]))) dv <- paste0('data_cfa_', factorModelNameVector[m], '$', dv) eval(envir = globalenv(), parse(text = paste0(drinking_outcomes[y], '_cfa_', factorModelNameVector[m], ' <- summaryTableFx(family = \'gaussian\', analysis = \'cfa\', outcomeVar = drinking_outcomes[', y, '], data = data, modelNum = ', m, ')'))) } } cat('Bayesian Confirmatory Factor Analysis and Alcohol Validators Summary Tables') for (y in 1:length(drinking_outcomes)) { dv <- drinking_outcomes[y] for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data <- data_bcfa_', factorModelNameVector[m]))) dv <- paste0('data_bcfa_', factorModelNameVector[m], '$', dv) eval(envir = globalenv(), parse(text = paste0(drinking_outcomes[y], '_bcfa_', factorModelNameVector[m], ' <- summaryTableFx(family = \'gaussian\', analysis = \'bcfa\', outcomeVar = drinking_outcomes[', y, '], data = data, modelNum = ', m, ')'))) } } cat('Bifactor Analysis and Alcohol Validators Summary Tables') for (y in 1:length(drinking_outcomes)) { for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data <- data_bf_', factorModelNameVector[m]))) eval(envir = globalenv(), parse(text = paste0(drinking_outcomes[y], '_bf_', factorModelNameVector[m], ' <- summaryTableFx(family = \'gaussian\', analysis = \'bf\', outcomeVar = drinking_outcomes[', y, '], data = data, modelNum = ', m, ')'))) } }
#cat('Frequentist Confirmatory Factor Analysis and Alcohol Validators Correlation Tables') for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data <- data_cfa_', factorModelNameVector[m]))) eval(envir = globalenv(), parse(text = paste0('drinking_corr_cfa_', factorModelNameVector[m], ' <- corrTableFx(analysis = \'cfa\', outcomes = drinking_outcomes, data = data, modelNum = ', m, ')'))) } #cat('Frequentist Confirmatory Factor Analysis and Alcohol Validators Correlation Tables') for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data <- data_bcfa_', factorModelNameVector[m]))) eval(envir = globalenv(), parse(text = paste0('drinking_corr_bcfa_', factorModelNameVector[m], ' <- corrTableFx(analysis = \'bcfa\', outcomes = drinking_outcomes, data = data, modelNum = ', m, ')'))) } #cat('Frequentist Confirmatory Factor Analysis and Alcohol Validators Correlation Tables') for (m in 1:length(factorModelNameVector)) { eval(parse(text = paste0('data <- data_bf_', factorModelNameVector[m]))) eval(envir = globalenv(), parse(text = paste0('drinking_corr_bf_', factorModelNameVector[m], ' <- corrTableFx(analysis = \'bf\', outcomes = drinking_outcomes, data = data, modelNum = ', m, ')'))) }
combinedLaTeXtableR(analysis = 'cfa', stats = c('Estimate', 'Pr(>|t|)'), statsNames = c('Estimate', 'P'), outcomes = sf12_outcomes, outcomeNameVector = outcomeNameVector, basic = TRUE, stars = TRUE) combinedLaTeXtableR(analysis = 'bcfa', stats = c('Estimate', 'Pr(>|t|)'), statsNames = c('Estimate', 'P'), outcomes = sf12_outcomes, outcomeNameVector = outcomeNameVector, basic = TRUE, stars = TRUE) combinedLaTeXtableR(analysis = 'bf', stats = c('Estimate', 'Pr(>|t|)'), statsNames = c('Estimate', 'P'), outcomes = sf12_outcomes, outcomeNameVector = outcomeNameVector, basic = TRUE, stars = TRUE) bodyBuildeR(mat = c('gh_cfa_dsm5', 'depressed_cfa_dsm5'), matModelName = 'dsm5', multiOutcome = TRUE, outcomeNames = c('General Health', 'Depressed'))
combinedLaTeXtableR(analysis = 'cfa', outcomes = dx_outcomes, outcomeNameVector = outcomeNameVector, stats = c('Estimate', 'Pr(>|z|)'), statsNames = c('Estimate', 'P'), stars = TRUE, basic = TRUE) combinedLaTeXtableR(analysis = 'bcfa', outcomes = dx_outcomes, outcomeNameVector = outcomeNameVector, stats = c('Estimate', 'Pr(>|z|)'), statsNames = c('Estimate', 'P'), stars = TRUE, basic = TRUE) combinedLaTeXtableR(analysis = 'bf', outcomes = dx_outcomes, outcomeNameVector = outcomeNameVector, stats = c('Estimate', 'Pr(>|z|)'), statsNames = c('Estimate', 'P'), stars = TRUE, basic = TRUE)
combinedLaTeXtableR(analysis = 'cfa', outcomes = drinking_outcomes, outcomeNameVector = outcomeNameVector, stats = c('Estimate', 'Pr(>|t|)'), statsNames = c('Estimate', 'P'), stars = TRUE, basic = TRUE) combinedLaTeXtableR(analysis = 'bcfa', outcomes = drinking_outcomes, outcomeNameVector = outcomeNameVector, stats = c('Estimate', 'Pr(>|t|)'), statsNames = c('Estimate', 'P'), stars = TRUE, basic = TRUE) combinedLaTeXtableR(analysis = 'bf', outcomes = drinking_outcomes, outcomeNameVector = outcomeNameVector, stats = c('Estimate', 'Pr(>|t|)'), statsNames = c('Estimate', 'P'), stars = TRUE, basic = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.