knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%"
)

idbrms: Infectious Disease Modelling using brms

Lifecycle: experimental R-CMD-check Codecov test coverage

Provides population-level infectious disease models as an extension of brms.

Installation

You can install the unstable development version from GitHub with:

# install.packages("devtools")
devtools::install_github("epiforecasts/idbrms")

Example

library(idbrms)
library(brms)
library(data.table)
library(ggplot2)
# apply a convolution of a log normal to a vector of observations
weight_cmf <- function(x, ...) {
  set.seed(x[1])
   meanlog <- rnorm(1, 1.6, 0.1)
   sdlog <- rnorm(1, 0.6, 0.025)
   cmf <- (cumsum(dlnorm(1:length(x), meanlog, sdlog)) -
     cumsum(dlnorm(0:(length(x) - 1), meanlog, sdlog)))
   conv <- sum(x * rev(cmf), na.rm = TRUE)
   conv <- rpois(1, round(conv, 0))
  return(conv)
}

obs <- data.table(
  region = "Glastonbury", 
  cases = as.integer(c(10 * exp(0.15 * 1:50), 
                       10 * exp(0.15 * 50) * exp(-0.1 * 1:50))),
  date = seq(as.Date("2020-10-01"), by = "days", length.out = 100))
# roll over observed cases to produce a convolution
obs <- obs[, deaths := frollapply(cases, 15, weight_cmf, align = "right")]
obs <- obs[!is.na(deaths)]
obs <- obs[, deaths := round(deaths * rnorm(.N, 0.25, 0.025), 0)]
obs <- obs[deaths < 0, deaths := 0]
ggplot(obs) +
  aes(x = date, y = cases) +
  geom_col(fill = "lightgrey") +
  geom_point(aes(y = deaths)) +
  theme_minimal()
prep_obs <- prepare(obs, model = "convolution", location = "region",
                    primary = "cases", secondary = "deaths", max_convolution = 15)
head(prep_obs, 10)
fit <- idbrm(data = prep_obs, family = poisson(link = "identity"))
fit <- idbrm(data = prep_obs, family = poisson(link = "identity"))
summary(fit)
exp(posterior_summary(fit, "scale_Intercept")) / 
  (1 + exp(posterior_summary(fit, "scale_Intercept")))
posterior_summary(fit, "cmean_Intercept")
exp(posterior_summary(fit, "lcsd_Intercept"))
expose_functions(fit)
expose_functions(fit)
n_obs <- length(prep_obs$primary)
fixed <- summary(fit)$fixed
pt_ests <- fixed[, 1]
names(pt_ests) <- rownames(fixed)
p_primary <- with(prep_obs, idbrms_convolve(primary, rep(pt_ests["scale_Intercept"], n_obs), 
                                            rep(pt_ests["cmean_Intercept"], n_obs),
                                            rep(pt_ests["lcsd_Intercept"], n_obs), 
                                            cmax, index, cstart, init_obs))
ggplot(prep_obs) + 
  aes(x = date, y = secondary) +
  geom_col(fill = "lightgrey") +
  geom_point(aes(y = p_primary)) +
  theme_minimal()
pp_check(fit)
plot(conditional_effects(fit), ask = FALSE)


epiforecasts/brms.id documentation built on Sept. 6, 2022, 3:40 a.m.