Code
miss <- enw_missing(formula = ~ 1 + rw(week), data = pobs)
miss$inits <- NULL
miss
Output
$formula
[1] "~1 + rw(week)"
$data
$data$miss_fintercept
[1] 1
$data$miss_fnrow
[1] 41
$data$miss_findex
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
$data$miss_fnindex
[1] 41
$data$miss_fncol
[1] 5
$data$miss_rncol
[1] 1
$data$miss_fdesign
cweek1 cweek2 cweek3 cweek4 cweek5
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 1 0 0 0 0
9 1 0 0 0 0
10 1 0 0 0 0
11 1 0 0 0 0
12 1 0 0 0 0
13 1 0 0 0 0
14 1 0 0 0 0
15 1 1 0 0 0
16 1 1 0 0 0
17 1 1 0 0 0
18 1 1 0 0 0
19 1 1 0 0 0
20 1 1 0 0 0
21 1 1 0 0 0
22 1 1 1 0 0
23 1 1 1 0 0
24 1 1 1 0 0
25 1 1 1 0 0
26 1 1 1 0 0
27 1 1 1 0 0
28 1 1 1 0 0
29 1 1 1 1 0
30 1 1 1 1 0
31 1 1 1 1 0
32 1 1 1 1 0
33 1 1 1 1 0
34 1 1 1 1 0
35 1 1 1 1 0
36 1 1 1 1 1
37 1 1 1 1 1
38 1 1 1 1 1
39 1 1 1 1 1
40 1 1 1 1 1
41 1 1 1 1 1
$data$miss_rdesign
fixed rw__week
1 0 1
2 0 1
3 0 1
4 0 1
5 0 1
attr(,"assign")
[1] 1 2
$data$miss_st
[1] 22
$data$miss_cst
[1] 22
$data$missing_reference
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$data$obs_by_report
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
[1,] 381 362 343 324 305 286 267 248 229 210 191 172 153 134 115 96 77 58
[2,] 401 382 363 344 325 306 287 268 249 230 211 192 173 154 135 116 97 78
[3,] 421 402 383 364 345 326 307 288 269 250 231 212 193 174 155 136 117 98
[4,] 441 422 403 384 365 346 327 308 289 270 251 232 213 194 175 156 137 118
[5,] 461 442 423 404 385 366 347 328 309 290 271 252 233 214 195 176 157 138
[6,] 481 462 443 424 405 386 367 348 329 310 291 272 253 234 215 196 177 158
[7,] 501 482 463 444 425 406 387 368 349 330 311 292 273 254 235 216 197 178
[8,] 521 502 483 464 445 426 407 388 369 350 331 312 293 274 255 236 217 198
[9,] 541 522 503 484 465 446 427 408 389 370 351 332 313 294 275 256 237 218
[10,] 561 542 523 504 485 466 447 428 409 390 371 352 333 314 295 276 257 238
[11,] 581 562 543 524 505 486 467 448 429 410 391 372 353 334 315 296 277 258
[12,] 601 582 563 544 525 506 487 468 449 430 411 392 373 354 335 316 297 278
[13,] 621 602 583 564 545 526 507 488 469 450 431 412 393 374 355 336 317 298
[14,] 641 622 603 584 565 546 527 508 489 470 451 432 413 394 375 356 337 318
[15,] 661 642 623 604 585 566 547 528 509 490 471 452 433 414 395 376 357 338
[16,] 681 662 643 624 605 586 567 548 529 510 491 472 453 434 415 396 377 358
[17,] 701 682 663 644 625 606 587 568 549 530 511 492 473 454 435 416 397 378
[18,] 721 702 683 664 645 626 607 588 569 550 531 512 493 474 455 436 417 398
[19,] 741 722 703 684 665 646 627 608 589 570 551 532 513 494 475 456 437 418
[20,] 761 742 723 704 685 666 647 628 609 590 571 552 533 514 495 476 457 438
[21,] 781 762 743 724 705 686 667 648 629 610 591 572 553 534 515 496 477 458
[22,] 801 782 763 744 725 706 687 668 649 630 611 592 573 554 535 516 497 478
18 19
[1,] 39 20
[2,] 59 40
[3,] 79 60
[4,] 99 80
[5,] 119 100
[6,] 139 120
[7,] 159 140
[8,] 179 160
[9,] 199 180
[10,] 219 200
[11,] 239 220
[12,] 259 240
[13,] 279 260
[14,] 299 280
[15,] 319 300
[16,] 339 320
[17,] 359 340
[18,] 379 360
[19,] 399 380
[20,] 419 400
[21,] 439 420
[22,] 459 440
$data$model_miss
[1] 1
$data$miss_obs
[1] 22
$priors
variable
1: miss_int
2: miss_beta_sd
description
1: Intercept on the logit scale for the proportion missing reference dates
2: Standard deviation of scaled pooled logit missing reference date\n effects
distribution mean sd
1: Normal 0 1
2: Zero truncated normal 0 1
Code
miss <- enw_missing(formula = ~0, data = pobs)
miss$inits <- NULL
miss
Output
$formula
[1] "~0"
$data
$data$miss_fintercept
[1] 0
$data$miss_fnrow
[1] 0
$data$miss_findex
numeric(0)
$data$miss_fnindex
[1] 0
$data$miss_fncol
[1] 0
$data$miss_rncol
[1] 0
$data$miss_fdesign
numeric(0)
$data$miss_rdesign
numeric(0)
$data$missing_reference
numeric(0)
$data$obs_by_report
numeric(0)
$data$miss_st
numeric(0)
$data$miss_cst
numeric(0)
$data$model_miss
[1] 0
$data$miss_obs
[1] 0
$priors
variable
1: miss_int
2: miss_beta_sd
description
1: Intercept on the logit scale for the proportion missing reference dates
2: Standard deviation of scaled pooled logit missing reference date\n effects
distribution mean sd
1: Normal 0 1
2: Zero truncated normal 0 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.