library(scoringutils) library(ggplot2) library(dplyr) library(DT) library(knitr) library(covidHubUtils) library(lubridate) library(data.table) knitr::opts_chunk$set(echo = FALSE, message = FALSE, warning = FALSE) include_ranking <- TRUE include_forecast_plot <- TRUE include_avail_forecasts <- FALSE include_ranks_over_time <- FALSE include_countries <- include_forecast_plot || include_forecast_plot || include_avail_forecasts || include_ranks_over_time
data <- params$data horizons <- data %>% filter(!is.na(true_value), !is.na(horizon)) %>% .$horizon %>% unique horizons <- horizons[as.integer(horizons) < 5] horizons <- horizons[order(as.integer(horizons))] summarise_by = c("model", "target_variable") target_variables <- c(Cases = "inc case", Deaths = "inc death")
The following table shows scores averaged across all locations, for all models that make forecasts for more than half of countries in the Hub. For country-by-country evaluation of performance of all models, select one of the countries in the drop-down list above.
out <- NULL for (variable in names(target_variables)) { out = c(out, paste("\n\n##", variable, "{.tabset .tabset-fade}\n\n")) for (this_horizon in horizons) { filter_list = list(paste0("target_variable == '", target_variables[[variable]], "'"), "!(is.na(quantile))", paste0("horizon == ", this_horizon)) horizon_string <- paste0(this_horizon, " week", if_else(this_horizon > 1, "s", ""), " ahead") out = c(out, paste("\n\n###", horizon_string, "\n\n")) out = c(out, knit_child(here::here("reports", "evaluation", "template-ranking-table.Rmd"), quiet = TRUE)) } }
r paste(if (include_ranking) knit(text = out, quiet = TRUE), collapse = '\n\n')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.