knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
This article describes creating an Exposure ADaM using the BDS structure.
Examples are currently presented using an underlying EX
domain where the EX
domain represents data as collected on the CRF and the ADEX
ADaM is output.
However, the examples can be applied to situations where an EC
domain is
used as input and/or ADEC
or another exposure ADaM is created.
There are many different approaches to modeling exposure data. This vignette
gives examples of creating PARAMCD
and AVAL
combinations using exposure data.
This vignette is not meant to be a guide or standard for the structure of
exposure analysis datasets.
Note: All examples assume CDISC SDTM and/or ADaM format as input unless otherwise specified.
ADT
, ADTM
, ADY
, ADTF
, ATMF
)PARAMCD
, PARAMN
, etc. from Reference TablesAVALCATx
)ASEQ
ASEQ
To start, all data frames needed for the creation of ADEX
should be read into
the environment. This will be a company specific process. Some of the
data frames needed may be EX
, SUPPEX
, and ADSL
.
For example purpose, the CDISC Pilot SDTM and ADaM datasets---which are included in {admiral.test}
---are used.
library(admiral) library(dplyr) library(admiral.test) library(lubridate) library(stringr) library(tibble) data("adsl") data("ex")
ex <- filter(ex, USUBJID %in% c('01-701-1015', '01-701-1023', '01-703-1086', '01-703-1096', '01-707-1037', '01-716-1024'))
The SUPPEX
domain can be joined to the EX
domain using the function derive_vars_suppqual()
.
This function will transpose the supplemental SDTM domain (e.g. SUPPEX
) and
join the transposed data to the parent domain (e.g. ex
) by STUDYID
,
USUBJID
using the IDVAR
and IDVARVAL
as an additional join variable.
Example call:
ex <- derive_vars_suppqual(ex, suppex)
Please note, the CDISC pilot did not include a SUPPEX
dataset and therefore this
join is not demonstrated.
At this step, it may be useful to join ADSL
to your EX
domain as well. Only the ADSL
variables used for derivations are selected at this step. The rest of the relevant ADSL
would be added later.
adsl_vars<-vars(TRTSDT, TRTSDTM, TRTEDT, TRTEDTM ) adex <- left_join( ex, select(adsl, STUDYID, USUBJID, !!!adsl_vars), by = c("STUDYID", "USUBJID") )
dataset_vignette(adex, display_vars = vars(USUBJID, EXTRT, EXDOSE,EXDOSFRQ, VISIT,EXSTDTC , EXENDTC , TRTSDTM, TRTEDTM))
The CDISC pilot EX
domain data does not contain a dose adjustment flag or
the planned dose information. For demonstration purposes, this will be added to
the data.
adex <- adex %>% mutate( EXADJ = case_when( USUBJID == "01-701-1028" & VISIT %in% c("WEEK 2") ~ "ADVERSE EVENT", USUBJID == "01-701-1148" & VISIT %in% c("WEEK 2", "WEEK 24") ~ "MEDICATION ERROR", TRUE ~ NA_character_ ), EXDOSE = case_when( USUBJID == "01-701-1028" & VISIT %in% c("WEEK 2") ~ 0, USUBJID == "01-701-1148" & VISIT %in% c("WEEK 2", "WEEK 24") ~ 0, TRUE ~ EXDOSE ) ) %>% mutate(EXPLDOS = if_else(EXTRT == "PLACEBO", 0, 54)) distinct(adex, EXTRT, EXPLDOS) count(adex, EXADJ)
ADT
, ADTM
, ADY
, ADTF
, ATMF
) {#datetime}The function derive_vars_dt()
can be used to derive ADT
. This function allows
the user to impute the date as well.
Example calls:
adex <- derive_vars_dt(adex, new_vars_prefix = "AST", dtc = EXSTDTC) adex <- derive_vars_dt(adex, new_vars_prefix = "AEN", dtc = EXENDTC)
dataset_vignette(adex, display_vars = vars(USUBJID, VISIT, EXSTDTC , EXENDTC ,ASTDT, AENDT))
adex <- select(adex, -ASTDTF, -AENDTF)
The next examples demonstrates the datetime imputation features available
in the derive_vars_dtm()
function, where the time is imputed as "00:00:00":
adex <- derive_vars_dtm( adex, dtc = EXSTDTC, date_imputation = "first", new_vars_prefix = "AST" ) adex <- derive_vars_dtm( adex, dtc = EXENDTC, date_imputation = "last", new_vars_prefix = "AEN" )
dataset_vignette(adex, display_vars = vars(USUBJID, VISIT,EXSTDTC , EXENDTC , ASTDTM, AENDTM))
The example above imputes the start date to the first first day of the month and imputes the end date to the last day of the month.
Please see the Date and Time Imputation for additional examples on calculating and imputing analysis dates.
Next, the analysis study days can be derived:
adex <- derive_var_astdy(adex, reference_date = TRTSDT, date = ASTDT) adex <- derive_var_aendy(adex, reference_date = TRTSDT, date = AENDT)
dataset_vignette(adex, display_vars = vars(USUBJID, VISIT, ASTDT, ASTDY, AENDT, AENDY, TRTSDT))
To compute the duration of treatment or exposure for a record, the
derive_vars_duration()
function can be used.
adex <- adex %>% derive_vars_duration( new_var = EXDURD, start_date = ASTDT, end_date = AENDT )
dataset_vignette(adex, display_vars = vars(USUBJID, VISIT,ASTDT, ASTDY, AENDT, AENDY, EXDURD))
The units of the calculated duration can also be changed. In this example, the duration is output as years:
adex <- adex %>% derive_vars_duration( new_var = EXDURDY, out_unit = "years", start_date = ASTDT, end_date = AENDT )
dataset_vignette(adex, display_vars = vars(USUBJID, VISIT, ASTDT, AENDT, EXDURD, EXDURDY))
Please refer to the derive_vars_duration()
documentation for detailed information on
the input parameters.
It may be necessary to calculate additional intermediate values. For example, the cumulative doses received and cumulative planned doses may be calculated as:
adex <- adex %>% mutate( DOSEO = EXDOSE * EXDURD, PDOSEO = EXPLDOS * EXDURD )
dataset_vignette(adex, display_vars = vars(USUBJID, EXDOSE, EXPLDOS, EXDURD, DOSEO, PDOSEO))
The first set of exposure records to create will be records mapped 1:1 to an
existing collected exposure record in SDTM. For these records, the AVAL
or
AVALC
would be calculated using columns that exist on the data and no summarizing
of records would be necessary.
These records may be used for input into summary records or be used individually for summarization in outputs. Some examples may be exposure duration, dose administered, dose adjusted, etc. based on one exposure record in SDTM.
These records can be derived using simple dplyr::mutate
assignments and then combined:
adex_durd <- adex %>% mutate( PARAMCD = "DURD", AVAL = EXDURD ) adex_dose <- adex %>% mutate( PARAMCD = "DOSE", AVAL = DOSEO ) adex_pldos <- adex %>% mutate( PARAMCD = "PLDOSE", AVAL = PDOSEO ) adex_adj <- adex %>% mutate( PARAMCD = "ADJ", AVALC = if_else(!is.na(EXADJ), "Y", NA_character_) ) adex_adjae <- adex %>% mutate( PARAMCD = "ADJAE", AVALC = if_else(EXADJ == "ADVERSE EVENT", "Y", NA_character_) ) adex <- bind_rows( adex_durd, adex_dose, adex_pldos, adex_adj, adex_adjae ) %>% mutate(PARCAT1 = "INDIVIDUAL") count(adex, PARAMCD)
adex %>% arrange(USUBJID,VISIT,desc(PARAMCD), EXSTDTC, EXENDTC) %>% dataset_vignette(display_vars = vars(USUBJID,VISIT, ASTDT, AENDT, PARAMCD, AVAL, AVALC) )
Exposure is commonly analyzed by a timing interval (e.g. APHASE
, APERIOD
,
AVISIT
, etc.). For these types of calculations, the derive_param_exposure()
function may be used. In addition to creating a summarized AVAL
, the function
will also compute minimum and maximum dates for the record.
For example, to calculate the total dose by subject and treatment,
adex <- derive_param_exposure( adex, by_vars = vars(STUDYID, USUBJID, !!!adsl_vars), input_code = "DOSE", analysis_var = AVAL, set_values_to = vars(PARAMCD = "TDOSE", PARCAT1 = "OVERALL"), summary_fun = function(x) sum(x, na.rm = TRUE) )
adex %>% arrange(USUBJID,PARAMCD,PARCAT1,VISIT, EXSTDTC, EXENDTC)%>% dataset_vignette(display_vars = vars(USUBJID,VISIT, PARCAT1,PARAMCD, AVAL, ASTDT, AENDT) )
adex <- filter(adex, PARAMCD != "TDOSE")
A record with PARAMCD == "TDOSE"
is created with PARCAT1
set to "OVERALL"
using
the records in ADEX
where PARAMCD == "DOSE"
by summing AVAL
. In addition,
the ASTDT
, and AENDT
are created as the minimum and
maximum date/times associated with each by_vars
grouping.
Multiple parameters (records) may be created at one time using the
call_derivation()
function:
adex <- adex %>% call_derivation( derivation = derive_param_exposure, variable_params = list( params( set_values_to = vars(PARAMCD = "TDOSE", PARCAT1 = "OVERALL"), input_code = "DOSE", analysis_var = AVAL, summary_fun = function(x) sum(x, na.rm = TRUE) ), params( set_values_to = vars(PARAMCD = "TPDOSE", PARCAT1 = "OVERALL"), input_code = "PLDOSE", analysis_var = AVAL, summary_fun = function(x) sum(x, na.rm = TRUE) ), params( set_values_to = vars(PARAMCD = "TDURD", PARCAT1 = "OVERALL"), input_code = "DURD", analysis_var = AVAL, summary_fun = function(x) sum(x, na.rm = TRUE) ), params( set_values_to = vars(PARAMCD = "TADJ", PARCAT1 = "OVERALL"), input_code = "ADJ", analysis_var = AVALC, summary_fun = function(x) if_else(sum(!is.na(x)) > 0, "Y", NA_character_) ), params( set_values_to = vars(PARAMCD = "TADJAE", PARCAT1 = "OVERALL"), input_code = "ADJAE", analysis_var = AVALC, summary_fun = function(x) if_else(sum(!is.na(x)) > 0, "Y", NA_character_) ) ), by_vars = vars(STUDYID, USUBJID, !!!adsl_vars) ) count(adex, PARAMCD, PARCAT1)
adex %>% arrange(USUBJID,PARAMCD,PARCAT1,VISIT, EXSTDTC, EXENDTC)%>% dataset_vignette(display_vars = vars(USUBJID,VISIT, PARCAT1,PARAMCD, AVAL,AVALC, ASTDT, AENDT) )
Dose intensity can be calculated using the function derive_param_doseint()
. The
planned dose and administered dose are passed into the function and a new record
is created with the dose intensity calculation.
adex <- adex %>% derive_param_doseint( by_vars = vars(STUDYID, USUBJID, !!!adsl_vars), set_values_to = vars(PARAMCD = "TNDOSINT"), tadm_code = "TDOSE", tpadm_code = "TPDOSE" )
dataset_vignette(adex, display_vars = vars(USUBJID,VISIT, EXSTDTC, EXENDTC, PARCAT1,PARAMCD, AVAL, ASTDT, AENDT) )
The default calculation for dose intensity is: Administered Doses / Planned Doses * 100.
Please see the derive_param_doseint()
documentation to see how planned doses of
0 or NA
are handled.
PARAMCD
, PARAMN
, etc. from Reference tables {#paramcd}To assign parameter level values such as PARAM
, PARAMN
, PARCAT1
, etc., a
lookup can be created to join to the source data.
For example, when creating adex
, a lookup based on the ADaM PARAMCD
value
may be created:
PARAMCD | PARAM | PARAMN ------- | ----- | ------ DURD | Study drug duration during constant dosing interval (days) | 1 DOSE | Dose administered during constant dosing interval (mg) | 2 PLDOSE | Planned dose during constant dosing interval (mg) | 3 ADJ | Dose adjusted during constant dosing interval | 4 ADJAE | Dose adjusted due to AE during constant dosing interval | 5 TDURD | Overall duration (days) | 6 TDOSE | Total dose administered (mg) | 7 TPDOSE | Total planned dose (mg) | 9 TADJ | Dose adjusted during study | 10 TADJAE | Dose adjusted during study due to AE | 11 TNDOSINT | Overall dose intensity (%) | 12
param_lookup <- tribble( ~PARAMCD, ~PARAM, ~PARAMN, "DURD", "Study drug duration during constant dosing interval (days)", 1, "DOSE", "Dose administered during constant dosing interval (mg)", 2, "PLDOSE", "Planned dose during constant dosing interval (mg)", 3, "ADJ", "Dose adjusted during constant dosing interval", 4, "ADJAE", "Dose adjusted due to AE during constant dosing interval", 5, "TDURD", "Overall duration (days)", 6, "TDOSE", "Total dose administered (mg)", 7, "TPDOSE", "Total planned dose (mg)", 9, "TADJ", "Dose adjusted during study", 10, "TADJAE", "Dose adjusted during study due to AE", 11, "TNDOSINT", "Overall dose intensity (%)", 12 )
adex <- left_join(adex, param_lookup, by = "PARAMCD") count(adex, PARAMCD, PARAM, PARAMN)
Please note, this is an example only and additional columns may be needed for the join depending on your lookup/metadata table.
AVALCATx
) {#cat}{admiral}
does not currently have a generic function to aid in assigning AVALCATx
/
AVALCAxN
values. Below is a simple example of how these values may be
assigned using the dplyr::mutate
function:
adex <- adex %>% mutate( AVALCAT1 = case_when( PARAMCD %in% c("TDURD") & AVAL < 30 ~ "< 30 days", PARAMCD %in% c("TDURD") & AVAL >= 30 & AVAL < 90 ~ ">= 30 and < 90 days", PARAMCD %in% c("TDURD") & AVAL >= 90 ~ ">=90 days", PARAMCD %in% c("TDOSE", "TPDOSE") & AVAL < 1000 ~ "< 1000 mg", PARAMCD %in% c("TDOSE", "TPDOSE") & AVAL >= 1000 ~ ">= 1000 mg", TRUE ~ NA_character_ ) )
adex %>% arrange(USUBJID,AVALCAT1,PARCAT1,VISIT, EXSTDTC, EXENDTC)%>% dataset_vignette(display_vars = vars(USUBJID,VISIT, PARCAT1,PARAMCD, AVAL, AVALCAT1))
ASEQ
{#aseq}The {admiral}
function derive_var_obs_number()
can be used to derive ASEQ
. An
example call is:
adex <- derive_var_obs_number( adex, new_var = ASEQ, by_vars = vars(STUDYID, USUBJID), order = vars(PARCAT1, ASTDT, VISIT, VISITNUM, EXSEQ, PARAMN), check_type = "error" )
dataset_vignette(adex, display_vars = vars(USUBJID,VISIT, PARCAT1,PARAMCD, AVAL, ASTDT, ASEQ))
ADSL
variables {#adsl_vars}If needed, the other ADSL
variables can now be added:
adex <- adex %>% left_join(select(adsl, !!!negate_vars(adsl_vars)), by = c("STUDYID", "USUBJID") )
ADaM | Sample Code ---- | -------------- ADEX | ad_adex.R{target="_blank"}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.