I believe it is helpful to think of PPI as a essentially a lot of data manipulation/wrangling followed by multi-level modeling.
This example will focus on how to perform the data manipulation portion of PPI.
This example assumes that the reader:
First, let's load some packages.
packages <- c("tidyverse", "eepR", "furrr", "ggpubr") xfun::pkg_attach(packages, install = T, message = F) script_dir <- "~/Documents/GitHub/ppi/R/" script_files <- list.files(script_dir) script_path <- paste0(script_dir, script_files) script_ppi <- lapply(script_path, source)
Let's define some MRI parameters and an upsample factor for convolution and deconvolution.
In this example, we are going to use SPM's first gamma variate (spmg1
) for the HRF. This is SPM's default HRF other current options include gam
and block
.
tr <- 1.5 n_volumes <- 260
events_file <- "~/Box/my_mri/behavioral/nback_3tb4188_2017_Sep_13_1341_soa.csv" out_file <- NULL
hrf_name <- "spmg1" upsample_factor <- 16 detrend_factor <- 2 psy_contrast_table <- cbind(nback_vs_baseline = c(1, 1, 1, 1, -4)/5, task_vs_control = c(-3, 1, 1, 1, 0)/4, linear_task = c(0, -1, 0, 1, 0), quadratic_task = c(0, -1, 2, -1, 0)/3) psy_contrast_table
Let's first obtain the hemodynamic response function (HRF) that we are going to use during convolution and deconvolution steps.
hrf <- get_hrf_afni(hrf_name, tr, upsample_factor)
df_psy <- read.csv(events_file) %>% rename(onset = start, trial_type = block) %>% mutate(duration = ifelse(trial_type == "0-back", 10 * 2.5, 20 * 2.5)) %>% select(run, onset, duration, trial_type) %>% group_by(run) %>% nest() %>% mutate(data = map(data, as.data.frame))
psy_var <- apply(df_psy[, "data"], 1, function(x) create_psy_var(x[[1]], psy_contrast_table, hrf, tr, n_volumes, upsample_factor))
dir_phys <- "/Volumes/shared/KK_KR_JLBS/Wave1/MRI/FMRI/PPI/Nback_individual_covariates/PHYS_MNI_42_-42_42/3tb1780/" files_phys <- list.files(dir_phys, "_mean.1D") path_phys <- paste0(dir_phys, files_phys) df_phys <- tibble(file = files_phys, path = path_phys) %>% mutate(run = str_remove(file, "_mean.1D"), run = str_remove(run, "r"), data = future_map(path, function(x) read.csv(x, header = F, col.names = "data")))
phys_var <- apply(df_phys[, "data"], 1, function(x) create_phys_var(x[[1]], detrend_factor, upsample_factor, hrf))
temp_psy_var <- map(psy_var, "upsample") temp_phys_var <- map(phys_var, "deconvolve") ppi_var <- list() for (i in 1:3) { ppi_var[[i]] <- create_ppi_var(temp_psy_var[[i]], temp_phys_var[[i]], hrf, tr, n_volumes, upsample_factor) }
temp_psy_var <- map(psy_var, "downsample") temp_phys_var <- map(phys_var, "detrend") temp_ppi_var <- map(ppi_var, "downsample") df_design_mat <- tibble(run = c(1:3)) %>% mutate(data = future_map(run, function(x) create_design_matrix(temp_psy_var[[x]], temp_phys_var[[x]], temp_ppi_var[[x]]))) %>% unnest() head(df_design_mat)
func_fig_data_heat_map <- function(data) { colnames(data) <- paste0(str_pad(1:ncol(data), 2, "left", "0"), "_", colnames(data)) apply(data, 2, scale_min_max) %>% as.data.frame() %>% mutate(volume = row_number()) %>% gather(., variable, value, -volume) %>% ggplot(., aes(variable, volume, fill = value)) + geom_raster() + scale_fill_distiller(palette = "Greys", direction = 1) + theme_minimal() + theme(axis.text.x = element_text(hjust = 1, angle = 45)) + labs(x = NULL) } func_fig_data_ts_long <- function(data) { colnames(data) <- paste0(str_pad(1:ncol(data), 2, "left", "0"), "_", colnames(data)) data %>% mutate(volume = row_number()) %>% gather(., variable, value, -volume) %>% ggplot(., aes(volume, value)) + geom_line() + facet_wrap(~ variable, scales = "free_y", ncol = 1) + theme_minimal() } func_fig_data_heat_map(df_design_mat)
func_fig_data_ts_long(df_design_mat)
if (!is.null(out_file)) { write.csv(df_design_mat_final, out_file) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.