knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
library(covid)
library(ggplot2)
library(dplyr)

DESCRIPTION

this data contain 2000960 observations and 9 variables. Docs: data ,data_type ,lat ,location ,location_code ,location_code_type,location_type,long ,value. @description the covid-19 dataset, and some function can help people to understand and explore this illness

@format A data frame with 9 variables

data:the data - data_type:Data in Yyy -lat:Latitude of center of geographic region, defined as either country or, if available, province -locationName of province/state, for countries where data is provided split across multiple provinces/states
-location_code:Name of country/region -location_code_type:the type of location -location_type:country -long:Longitude of center of geographic region, defined as either country or, if available, province -valueNumber of cases on given date @source Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus \href{https://systems.jhu.edu/research/public-health/ncov/}{website}. @keywords datasets coronavirus COVID19 @details The dataset contains the daily summary of Coronavirus cases (confirmed, death, and recovered), by state/province.

plot

conf_df <- coronavirus %>% 
  filter(data_type == "cases_new") %>%
  group_by(location) %>%
  summarise(total_cases = sum(value)) %>%
  arrange(-total_cases) %>%
  head( 10)

 library(ggplot2)
ggplot(conf_df,aes(x=location,y=total_cases,fill=location))+
  geom_bar(stat = "identity", alpha = 0.7) + 
  coord_polar()+
  theme(panel.border=element_blank())  
conf_df1 <- coronavirus %>% 
  filter(data_type == "deaths_new") %>%
  group_by(location) %>%
  summarise(deaths = sum(value)) %>%
  arrange(-deaths) %>%
  head( 10)

 library(ggplot2)
ggplot(conf_df1,aes(x=location,y=deaths,fill=location))+
  geom_bar(stat = "identity", alpha = 0.7) + 
  coord_polar()+
  theme(panel.border=element_blank())  
conf_df2 <- coronavirus %>% 
  filter(data_type == "recovered_new") %>%
  group_by(location) %>%
  summarise(recovered = sum(value)) %>%
  arrange(-recovered) %>%
  head( 10)

 library(ggplot2)
ggplot(conf_df2,aes(x=location,y=recovered,fill=location))+
  geom_bar(stat = "identity", alpha = 0.7) + 
  coord_polar()+
  theme(panel.border=element_blank())  


etc5523-2020/r-package-assessment-cgon0007 documentation built on Jan. 1, 2021, 1:12 a.m.