knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE) knitr::opts_knit$set(root.dir = rprojroot::find_rstudio_root_file())
library(readxl) library(sf) library(janitor) library(tidyverse) library(rmapshaper) library(tidygeocoder) library(wordcloud) library(RColorBrewer) library(tm) # to create corpus library(wordcloud2) library(viridis)
swcd <- st_read("data-raw/shapefiles/SWCDs/SWCD.shp") |> clean_names() |> st_transform("+proj=longlat +ellps=WGS84 +datum=WGS84") |> ms_simplify(keep = 0.2,keep_shapes = TRUE) |> select(swcd_name, geometry) |> rename(name = swcd_name) saveRDS(swcd, "data/swcd.rds") plot(swcd['name'])
Public Water Service Boundaries
pws <- st_read("data-raw/shapefiles/PWS_shapefile/PWS_Export.shp") |> clean_names() |> st_transform("+proj=longlat +ellps=WGS84 +datum=WGS84") |> ms_simplify(keep = 0.2,keep_shapes = TRUE) |> select(pws_name, geometry) |> rename(name = pws_name) saveRDS(pws, "data/pws.rds") plot(pws['name'])
# Create a vector containing only the text text <- pws$pws_name # Create a corpus docs <- Corpus(VectorSource(text)) # standardize corpus docs <- docs %>% tm_map(removeNumbers) %>% tm_map(removePunctuation) %>% tm_map(stripWhitespace) docs <- tm_map(docs, content_transformer(tolower)) docs <- tm_map(docs, removeWords, stopwords("english")) # create a document matrix dtm <- TermDocumentMatrix(docs) matrix <- as.matrix(dtm) words <- sort(rowSums(matrix), decreasing = TRUE) df <- data.frame(word = names(words), freq = words) df$word <- as.character(df$word) df <- df |> mutate(freq = case_when( word == "workshop" ~ 7, TRUE ~ freq)) |> filter(word != "workshops") target <- c("also","really", "helpful", "wasnt", "etc", "asks", "move", "gave", "connect", "fellows") "%ni%" <- Negate("%in%") df <- filter(df, word %ni% target) df$word <- as.factor(df$word) set.seed(27) wordcloud(words = df$word, freq = df$freq, min.freq = 5, rot.per= 0.4, colors = viridis(8), random.order = FALSE, family = "serif", font = 2)
Crazy oblong boundaries
gcd <- st_read("data-raw/shapefiles/GCD_Shapefiles/TWDB_GCD_NOV2019.shp") |> clean_names() |> st_transform("+proj=longlat +ellps=WGS84 +datum=WGS84") |> ms_simplify(keep = 0.2,keep_shapes = TRUE) |> select(shortnam, geometry) |> rename(name = shortnam) saveRDS(gcd, "data/gcd.rds") plot(gcd['name'])
aqu <- st_read("data-raw/shapefiles/major_aquifers/NEW_major_aquifers_dd.shp") |> clean_names() |> st_transform("+proj=longlat +ellps=WGS84 +datum=WGS84") |> ms_simplify(keep = 0.2,keep_shapes = TRUE) |> select(aq_name, geometry) |> rename(name=aq_name) saveRDS(aqu, "data/aqu.rds") plot(aqu['name'])
rb <- st_read("data-raw/shapefiles/Major_River_Basins_Shapefile/TWDB_MRBs_2014.shp") |> clean_names() |> st_transform("+proj=longlat +ellps=WGS84 +datum=WGS84") |> ms_simplify(keep = 0.2,keep_shapes = TRUE) |> select(basin_name, geometry) |> rename(name = basin_name) |> mutate(name = paste0(name, " River Basin")) saveRDS(rb, "data/rb.rds") plot(rb['name'])
riv <- st_read("data-raw/shapefiles/Major_Rivers_dd83/MajorRivers_dd83.shp") |> clean_names() |> st_transform("+proj=longlat +ellps=WGS84 +datum=WGS84") |> ms_simplify(keep = 0.001,keep_shapes = FALSE) |> select(name, geometry) saveRDS(riv, "data/riv.rds") plot(riv['name'])
rwpa <- st_read("data-raw/shapefiles/RWPA_Shapefile/TWDB_RWPAs_2014.shp") |> clean_names() |> st_transform("+proj=longlat +ellps=WGS84 +datum=WGS84") |> ms_simplify(keep = 0.2,keep_shapes = TRUE) |> select(reg_name, geometry) |> rename(name = reg_name) saveRDS(rwpa, "data/rwpa.rds") plot(rwpa['name'])
county <- st_read("data-raw/shapefiles/Texas_County_Boundaries_Detailed-shp/County.shp") |> clean_names() |> st_transform("+proj=longlat +ellps=WGS84 +datum=WGS84") |> ms_simplify(keep = 0.2,keep_shapes = TRUE) |> select(cnty_nm, geometry) |> rename(name = cnty_nm) saveRDS(county, "data/counties.rds") plot(county['name'])
addy <- tibble(address ="110 Jacob Fontaine Ln") werk <- addy |> tidygeocoder::geocode(address = address, method = "osm")
wd <- st_read("data-raw/Water_Districts/Water_Districts.shp") |> clean_names() |> st_transform("+proj=longlat +ellps=WGS84 +datum=WGS84") |> ms_simplify(keep = 0.2,keep_shapes = TRUE) |> select('name', 'type','county', 'source','fips', 'geometry') plot(wd['name'])
fg <- st_read("data-raw/shapefiles/Regional_Flood_Planning_Groups/Regional_Flood_Planning_Groups.shp") |> clean_names() |> st_transform("+proj=longlat +ellps=WGS84 +datum=WGS84") |> ms_simplify(keep = 0.2,keep_shapes = TRUE) |> select(rfpg, region_no, geometry) |> rename(name = rfpg) saveRDS(fg, "data/fg.rds") plot(fg['name'])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.