The aim of the prcbench
package is to provide a testing workbench for
evaluating precision-recall curves under various conditions. It contains
integrated interfaces for the following five tools. It also contains
predefined test data sets.
| Tool | Language | Link | |:--------------|:---------|:----------------------------------------------------------------------------------------------------------| | precrec | R | Tool web site, CRAN | | ROCR | R | Tool web site, CRAN | | PRROC | R | CRAN | | AUCCalculator | Java | Tool web site | | PerfMeas | R | CRAN |
Disclaimer: prcbench
was originally develop to help our
precrec library in order
to provide fast and accurate calculations of precision-recall curves
with extra functionality.
prcbench
uses pre-defined test sets to help evaluate the accuracy of
precision-recall curves.
create_toolset
: creates objects of different tools for testing (5
different tools)create_testset
: selects pre-defined data sets (c1, c2, and c3)run_evalcurve
: evaluates the selected tools on the simulation dataautoplot
: shows the results with ggplot2
and patchwork
## Load library
library(prcbench)
## Plot base points and the result of 5 tools on pre-defined test sets (c1, c2, and c3)
toolset <- create_toolset(c("precrec", "ROCR", "AUCCalculator", "PerfMeas", "PRROC"))
testset <- create_testset("curve", c("c1", "c2", "c3"))
scores1 <- run_evalcurve(testset, toolset)
autoplot(scores1, ncol = 3, nrow = 2)
prcbench
helps create simulation data to measure computational times
of creating precision-recall curves.
create_toolset
: creates objects of different tools for testingcreate_testset
: creates simulation datarun_benchmark
: evaluates the selected tools on the simulation data## Load library
library(prcbench)
## Run benchmark for auc5 (5 tools) on b10 (balanced 5 positives and 5 negatives)
toolset <- create_toolset(set_names = "auc5")
testset <- create_testset("bench", "b10")
res <- run_benchmark(testset, toolset)
print(res)
| testset | toolset | toolname | min | lq | mean | median | uq | max | neval | |:--------|:--------|:--------------|-----:|-----:|-----:|-------:|-----:|-----:|------:| | b10 | auc5 | AUCCalculator | 0.93 | 0.96 | 1.12 | 1.00 | 1.00 | 1.68 | 5 | | b10 | auc5 | PerfMeas | 0.06 | 0.06 | 0.08 | 0.06 | 0.07 | 0.17 | 5 | | b10 | auc5 | precrec | 3.40 | 3.45 | 3.73 | 3.47 | 3.58 | 4.74 | 5 | | b10 | auc5 | PRROC | 0.14 | 0.14 | 0.17 | 0.14 | 0.16 | 0.28 | 5 | | b10 | auc5 | ROCR | 1.57 | 1.59 | 1.69 | 1.60 | 1.63 | 2.06 | 5 |
Introduction to
prcbench
– a package vignette that contains the descriptions of the functions
with several useful examples. View the vignette with
vignette("introduction", package = "prcbench")
in R.
Help pages – all
the functions including the S3 generics have their own help pages with
plenty of examples. View the main help page with
help(package = "prcbench")
in R.
install.packages("prcbench")
AUCCalculator
requires a Java runtime environment (>= 6) if
AUCCalculator
needs to be evaluated.
You can install a development version of prcbench
from our GitHub
repository.
devtools::install_github("evalclass/prcbench")
Make sure you have a working development environment.
Windows: Install Rtools (available on the CRAN website).
Mac: Install Xcode from the Mac App Store.
Linux: Install a compiler and various development libraries (details vary across different flavors of Linux).
Install devtools
from CRAN with install.packages("devtools")
.
Install prcbench
from the GitHub repository with
devtools::install_github("evalclass/prcbench")
.
microbenchmark does
not work on some OSs. prcbench
uses system.time
when
microbenchmark
is not available.
sudo R CMD javareconf
JDKs
JDKs for macOS
JRI support on macOS Big Sur – see this Stack Overflow thread.
install.packages("rJava", configure.args = "--disable-jri")
Precrec: fast and accurate precision-recall and ROC curve calculations in R
Takaya Saito; Marc Rehmsmeier
Bioinformatics 2017; 33 (1): 145-147.
doi: 10.1093/bioinformatics/btw570
Classifier evaluation with imbalanced datasets – our web site that contains several pages with useful tips for performance evaluation on binary classifiers.
The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets – our paper that summarized potential pitfalls of ROC plots with imbalanced datasets and advantages of using precision-recall plots instead.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.