cvForecastControl: Default Cross-validation control

Description Usage Arguments Value Author(s) Examples

Description

Default Cross-validation control

Usage

1
2
3
4
5
cvForecastControl(stepSize = 1, maxHorizon = 1, minObs = 7,
  fixedWindow = TRUE, summaryFunc = tsSummary, preProcess = FALSE,
  ppMethod = "guerrero", cvMethod = "MAPE", tsfrequency = "month",
  OutlierClean = TRUE, residlevel = 0.1,
  dateformat = "%d/%m/%Y %H:%M:%S")

Arguments

stepSize

size step for the cross-validation samples

maxHorizon

forecasting horizon

minObs

minumum number of observation. Default is two times cycle of data

fixedWindow

keep fixed the sampling window, default is TRUE

summaryFunc

extra function to compute statistics of the model

preProcess

if TRUE does Box-Cox data transformation in to the data

ppMethod

if 'preProcess' is TRUE make 'guerrero' or 'loglik' tranformation. See BoxCox.lambda

cvMethod

accuracy method for best model choice. See accuracy

tsfrequency

time series data frequency

OutlierClean

if TRUE, remove outliers from the data. See tsclean

residlevel

confidence level for residual tests

dateformat

date format for charater dates

Value

list of parameters

Author(s)

LOPES, J. E.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
# Control
myControl <- cvForecastControl(
minObs = 14,
stepSize = 5,
maxHorizon = 30,
summaryFunc=tsSummary,
cvMethod="MAPE",
tsfrequency='day',
OutlierClean=FALSE)
myControl

evandeilton/cvforecast documentation built on May 16, 2019, 9:36 a.m.