## plotting votes.diss(dissimilarity) in a bivariate plot and ## partitioning into 2 clusters data(votes.repub) votes.diss <- daisy(votes.repub) pamv <- pam(votes.diss, 2, diss = TRUE) clusplot(pamv, shade = TRUE) ## is the same as votes.clus <- pamv$clustering clusplot(votes.diss, votes.clus, diss = TRUE, shade = TRUE) ## Now look at components 3 and 2 instead of 1 and 2: str(cMDS <- cmdscale(votes.diss, k=3, add=TRUE)) clusplot(pamv, s.x.2d = list(x=cMDS$points[, c(3,2)], labs=rownames(votes.repub), var.dec=NA), shade = TRUE, col.p = votes.clus, sub="", xlab = "Component 3", ylab = "Component 2") clusplot(pamv, col.p = votes.clus, labels = 4)# color points and label ellipses # "simple" cheap ellipses: larger than minimum volume: # here they are *added* to the previous plot: clusplot(pamv, span = FALSE, add = TRUE, col.clus = "midnightblue") ## Setting a small *label* size: clusplot(votes.diss, votes.clus, diss = TRUE, labels = 3, cex.txt = 0.6) if(dev.interactive()) { # uses identify() *interactively* : clusplot(votes.diss, votes.clus, diss = TRUE, shade = TRUE, labels = 1) clusplot(votes.diss, votes.clus, diss = TRUE, labels = 5)# ident. only points } ## plotting iris (data frame) in a 2-dimensional plot and partitioning ## into 3 clusters. data(iris) iris.x <- iris[, 1:4] cl3 <- pam(iris.x, 3)$clustering op <- par(mfrow= c(2,2)) clusplot(iris.x, cl3, color = TRUE) U <- par("usr") ## zoom in : rect(0,-1, 2,1, border = "orange", lwd=2) clusplot(iris.x, cl3, color = TRUE, xlim = c(0,2), ylim = c(-1,1)) box(col="orange",lwd=2); mtext("sub region", font = 4, cex = 2) ## or zoom out : clusplot(iris.x, cl3, color = TRUE, xlim = c(-4,4), ylim = c(-4,4)) mtext("`super' region", font = 4, cex = 2) rect(U[1],U[3], U[2],U[4], lwd=2, lty = 3) # reset graphics par(op)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.