This is with:
get_papers = FALSE
# data driven is the same as data-driven library(petro.One) top <- c("data driven") discipline <- c("reservoir", "production", "surface facilities", "metering") by.discipline.dd <- join_keywords(top, discipline, get_papers = FALSE, sleep = 3, verbose = TRUE) by.discipline.dd
with:
get_papers = TRUE
This causes the creation of a dataframe for papers
library(petro.One) top <- c("data driven") discipline <- c("reservoir", "production", "surface facilities", "metering") by.discipline.dd <- join_keywords(top, discipline, get_papers = TRUE, sleep = 3, verbose = TRUE) by.discipline.dd
library(rNodal.utils) data_driven <- by.discipline.dd save_to_project(data_driven, name = "data_driven_L2")
We try this other one with 1300+
papers.
library(petro.One) major <- c("artificial intelligence") minor <- c("drilling") # the returning data structure is a a list # the list contains two dataframes: one for the keywords and a second for the papers ai_drilling <- join_keywords(major, minor, get_papers = TRUE, sleep = 3, verbose = TRUE) ai_drilling
library(rNodal.utils) save_to_project(ai_drilling, name = "ai_drilling_L2")
table(by.discipline.dd$papers$keyword)
The app crashes with more than 1000 papers
my.url <- by.discipline.dd$keywords$url[3] my.url get_papers_count(my.url) # 79 # onepetro_page_to_dataframe(my.url)
onepetro_page_to_dataframe(my.url)
# using onepetro_page_to_dataframe() recno <- 3 my.sf <- by.discipline.dd$keywords$sf[recno] url.1 <- make_search_url(my.sf, how = "all") url.1 paper_count <- get_papers_count(url.1) paper_count url.2 <- make_search_url(my.sf, how = "all", rows = paper_count) url.2 papers.df <- onepetro_page_to_dataframe(url.2)
papers.df
# "conference-paper" are the main category of papers library(petro.One) recno <- 2 my.sf <- by.discipline.dd$keywords$sf[recno] url.1 <- make_search_url(my.sf, how = "all") url.1 paper_count <- get_papers_count(url.1) paper_count url.2 <- make_search_url(my.sf, how = "all", rows = paper_count) url.2
papers.df.j <- read_multipage(url.2) %>% filter(dc_type == "journal-paper") papers.df.j
paper_count <- as.numeric(urltools::param_get(url.2, "rows")) paper_count
papers.df.j <- read_multipage(url.2, doctype = "journal-paper") papers.df.c <- read_multipage(url.2, doctype = "conference-paper") papers.df.p <- read_multipage(url.2, doctype = "presentation") papers.df <- rbind(papers.df.c, papers.df.j, papers.df.p) papers.df
library(petro.One) my_url <- make_search_url(query = "neural network", how = "all") df <- read_multidoc(my_url) dim(df)
recno <- 1 my.sf <- by.discipline.dd$keywords$sf[recno] url.1 <- make_search_url(my.sf, how = "all") url.1 papers_by_type(url.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.